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Abstract. Smart and flexible operation of components in district heating systems can play a crucial role in 
integrating larger shares of renewable energy sources in energy systems. Buildings are one of the crucial 
components that will enable flexibility in the district heating by using intelligent operation. Recent work 
suggests that such improved operation at the same time can increase thermal comfort and lower economic 
costs. We have digitalised the heating system in a Danish school by adding IoT devices, such as smart 
thermostats and temperature sensors to demonstrate the possibilities of making buildings smart. Based on 
experimental data, this paper introduces a non-linear grey-box model of the thermal dynamics of the 
building. A non-linear model predictive control method is presented for the thermostatic set-point control 
of the building's radiators. Based on the building model and the control algorithm, simulation studies are 
carried out to show the flexibility potential of the building. When used for lowering the return temperature 
the results suggest that operational costs can be lowered by around 10% using predictive control. 

1 Introduction 

 Digitalisation of heating systems, i.e., through smart 
thermostats and indoor climate sensors, creates the 
possibility of making buildings smart by having data of 
the building heat dynamic. This, however, does not 
alone make the building (or the heating system) smart as 
it does not yet use the data to make the system efficient 
or flexible. Without smartness, the system is just data-
rich. The system becomes smart when it uses the data to 
e.g. lower some cost functions, that could be to lower 
the heating costs without violating thermal comfort or 
reduce heat consumption during peak hours (known as 
peak shaving). The data can be used to formulate models 
that describe the dynamics of the building climate. Such 
models enable the system to become smart using e.g. 
Model Predictive Control (MPC) [1]. MPC is a control 
method that minimises some predefined cost function 
while satisfying a set of constraints. MPC has become 
very popular for the heating, ventilation, and air-
conditioning sector in the past years as it makes the 
system smart by making it efficient and/or flexible [2] 
[3] [4]. The advantage of the MPC over other control 
methods is its ability to predict the future behaviour of 
the system. Thereby, the MPC can take weather 
predictions and future activities into account when 
optimising the manipulated variables (e.g., desire 
temperature in a room) of the system [5]. MPC setups 
usually run in a closed-loop where the controller gets 
feedback on how the system reacted to the latest input 
or disturbance. The MPC is based on a model (e.g. a set 
of differential equations) that describes the behaviour of 
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the system and generates predictions of the system's 
future behaviour. 
 This article considers the heating system of an old 
Danish school building. The building has been 
“digitalised” with the use of smart thermostats and IoT 
sensing devices [6], to enable smart control of its heating 
system using MPC. For this building, a non-linear grey-
box model, hence a model based on physics and 
monitoring data, is formulated, with the purpose to 
describe the behaviour of the building's heat dynamics. 
Grey-box modelling is a well-known procedure used for 
system identification and modelling dynamics of 
buildings [7] [8]. The parameters of the building model 
are estimated using the CTSM-R software [9]. The non-
linear MPC (NMPC) uses the grey-box model to control 
the heating system according to some thermal comfort 
constraints. The MPC utilises weather predictions of the 
solar irradiance and outdoor temperature to compute the 
optimal radiator set-points, needed to obtain the desired 
indoor air temperature. The objective of the controller 
presented in this work is to lower the heating cost of the 
building. In order to demonstrate the flexibility potential 
of the model, we generated a fictive price signal for the 
energy delivered by the district heating (DH) network. 
The model developed here is able to use such a variable 
price signal and consequently minimise the heating 
costs (by heating when the energy price from the DH 
network is lower). 
 The methodology adopted in this work has already 
shown to be fruitful for lowering the electricity 
consumption of a smart solar tank for storing heat during 
sunny periods. The tank was modelled as a grey-box 
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model, and the MPC takes advantage of future 
disturbances (solar radiation and outdoor temperature) 
and its flexibility [10]. The methodology was also 
successfully adopted in controlling the heat pump of a 
residential house, by lower the electricity expenses with  
varying electricity prices [11]. 
 The main contribution of this work is to 
demonstrate how to use a non-linear grey box model for 
MPC. We present a multiple shooting method to solve 
the optimal control problem related to the MPC [12] and 
incorporate numerical weather forecasts as future 
inputs. The second contribution of this work is to 
illustrate the effects of using the MPC through two 
different simulation studies. The first study shows how 
to make the building flexible by utilising the right price 
signal. The second study shows the potential for 
optimising the operations of the building in order to 
minimise the economic costs associated with heating a 
Danish building in a district heating network. The result 
of the MPC is compared to a simple fixed-schedule 
control strategy which is among the current standards in 
buildings. 

1.1 Structure and outline of the paper 

 The article is organized as follows. Section Error! 
Reference source not found. presents the building and 
the modelling scheme along with the parameter 
estimation method and its results from the estimation. 
Section 3 introduces the NMPC method that is used to 
control the building. The simulation results are 
presented and discussed in Section 4. The article is 
concluded in Section 5. 

2 The building and the non-linear 
thermal model 

 This section introduces the building and the non-
linear building model used in the present work. The 
model is thoroughly introduced and discussed in [13], 
where also further details on the building and the model 
can be found.  

2.1 Building description and set-up 

 The building with an area of 1576 m2 acts as a 
school and has 12 classrooms, 3 meeting/office rooms, 
and 7 corridors/stairs/open spaces distributed over three 
floors. Error! Reference source not found. shows a 
picture and a detailed, digital simulation model of the 
building. The building was built in 1929 and is not 
insulated- to meet today's standards. The building is 
equipped with a hydronic heating system and is 
connected to the local district heating network. To 
deliver heat to the rooms, radiators are used; the 
radiators are connected through a two-pipe system to the 
building heat exchanger It should be noticed that steady-
state analyses related to the heat load of the building 
indicated that the heating power of the radiators are 
under-sized in some rooms. As a result, in such rooms a 

comfortable temperature cannot always be maintained 
[14]. 

To make the building smart and enable real-time 
control, sensors and actuators were installed. 
Accordingly, temperature sensors have been installed in 
each room (the sensors are also able to measure CO2-
levels and humidity), and each radiator was equipped 
with a smart thermostat. Moreover, heat-meters have 
been installed to monitor the energy use of the building. 
Furthermore, the temperature of the supply- and return 
water to the heat exchanger connected to the district 
heating is measured (on the building side) by sensors on 
both sides of the heat exchanger. All sensor data are 
collected through servers installed at DTU and the data 
readings are executed every 15 minutes. 

2.2 Building model 

We consider a non-linear model on the form of Eq. 
Error! Reference source not found.) and Error! 
Reference source not found. 

 
𝑑𝒙(𝑡) = 𝑓൫𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)൯𝑑𝑡                          

              +𝑔൫𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)൯𝑑𝝎(𝑡) (1𝑎) 
𝐲୩ = ℎ൫𝒙(𝑡௞)൯ + 𝒘௞ ,        𝒘௞~𝑁(0, 𝑹) (1𝑏) 

 
where 𝒙(𝑡) is the state vector, 𝑢(𝑡) is the control input, 
𝒅(𝑡) is the disturbances, and 𝑹 is the observation error 
covariance. 𝝎(𝑡) is Brownian motion and reflects the 
uncertainty of the model. Eq. (1a) is structurally similar 
to ordinary differential equations except for the 
diffusion term. The use of the diffusion term has the 
advantages that it describes effects that are too complex 
and (nearly) impossible to model deterministically, and 
it predicts uncertainty as well, e.g. the variance of the 
estimates [15]. 

Figure 1. The building picture (top) and a screenshot of 
the digital model of the building (bottom) used as demo-
case in this work. 
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 In order to simplify the control of the building, in 
this work we consider and model the building as a 
unique big room with uniform temperature, represented  
by the average of the measured temperature in all closed 
rooms (classrooms and meeting rooms) 
 

𝑇௜ =
1

𝑛
෍ 𝑇௞

௡

௞ୀଵ

. (2) 

 

Since the heating system is not correctly balanced, and 
some of the rooms have under-dimensioned radiators, 
this modelling and control approach consequently 
implies that some rooms are going to be warmer or 
colder; however, this simplification is needed at this first 
stage, since the problem is simplified significantly in 
terms of dimensionality. It is important for real-time 
MPC that the model is small enough to compute the 
control input without too much delay. In the following, 
we consider a system with the states  
 

𝒙(𝑡) = [𝑇௜(𝑡), 𝑇௪(𝑡), 𝛷(𝑡), 𝑇௛(𝑡), 𝑇ret(𝑡)], (3) 
 
where 𝑇௜  is the average indoor air temperature, 𝑇௪ is the 
temperature of the building wall, Φ is the flow of the 
water in the radiator circuit, 𝑇௛ is the temperature of the 
radiators, and 𝑇ret is the temperature of the returning 
water (going to the heat exchanger of the building). The 
control input to the model, 𝑢(𝑡), is the set-points of the 
radiator thermostats. To estimate the valve-opening 
state of the thermostats, the following sigmoid function 
is used: 

𝑓valve(𝑡) =
1

1 + 𝑒ି஑൫௨(௧)ି்೔(௧)ା o்ffset(௧)൯
, (4) 

 
where u is the thermostat set-point, α determines the 
slope of the sigmoid function, and 𝑇offset(𝑡) is an offset 
that models the physical distance between the 
temperature sensors in the room and the thermostats of 
the radiators. Fig. 2 shows the estimated 𝑓መvalve. The 
sigmoid function is attractive due to its fixed shape that 
fits the behaviour of thermostats and requires only two 
parameters, 𝛼 and 𝑇୭୤୤ୱୣ୲. The term 𝑓መvalve therefore 
estimates how open the radiator valves are (1 being fully 
open and 0 being fully closed), i.e. how much water 
flows through the radiators. The disturbances include 
the ambient air temperature and solar irradiance 𝒅(𝑡) =
[𝑇௔(𝑡), 𝜙௦(𝑡)]୘. 
 The building dynamics model are the following [1]: 
 

𝑓൫𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)൯ = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎡

1

𝐶௜
൬

1

𝑅௜௛
൫𝑇௧

௛ − 𝑇௧
௜൯ +

1

𝑅௜௪
൫𝑇௧

௪ − 𝑇௧
௜൯ + 𝐴௪𝜙௧

௦൰

1

𝐶௪
൭

1

𝑅௜௪
൫𝑇௧

௜ − 𝑇௧
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1

𝑅௪௔

(𝑇௧
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௪)൱

1

𝐶௙
൫Φmax𝑓௧

୴ୟ୪୴ୣ − Φ௧൯

1

𝐶௛
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1

𝑅௜௛
൫𝑇௧
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൭
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. (5) 

 
In Eq (5), to save space, we write time dependence 

as subscript, e.g. 𝑇௔(𝑡) = 𝑇௧
௔. 𝐴௪ is the effective area of  

the solar radiation gain, 𝑐௣,௪ is the specific heat capacity 
of water, and Φmax is the maximum water flow in the 
radiator circuit. 𝑇for is the supply temperature of the 
water on the building side of the heat exchanger and is 

Parameter Estimate Unit 

𝑇offset -0.101 [°C] 

𝐶௛ 0.134 [kJ/°C] 

𝐶௙ 0.198  

𝑅௥௙ 2.030 [°C h/kJ] 

𝐶௜ 9.57 [kJ/°C] 

𝐶௪ 45.36 [kJ/°C] 

𝑅௜௛ 2.151 [°C h/kJ] 

𝑅௜௪ 0.199 [°C h/kJ] 

𝑅௪௔ 2.251 [°C h/kJ] 

𝐴௦ 7.600 [m2] 

𝜎ଵ 8.6e-4 [°C] 

𝜎ଶ 0.429 [°C] 

𝜎ଷ 111.6 [kg/h] 

𝜎ସ 1.647 [°C] 

𝜎ହ 6.469 [°C] 

𝑅ଵ 9.6e-7 [°C] 

𝑅ଶ 2.7e-4 [kW] 

𝑅ଷ 5.4e-3 [°C] 

Φmax 1145.3 [kg/h] 

𝛼 1.592 [°C-1] 

Table 1. The parameter estimates and their physical units 

Figure 2. The estimated valve function of the thermostats, 
𝑓መvalve, as a function of how much the room temperature 
deviates from the set-point. The sigmoid function is 
attractive for this model since it ranges from 0 to 1 and has 
an exponential transition. Also, it relies on only two 
parameters and makes the parameter estimation robust. 
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kept constant at 55 °C. The diffusion term in Eq. (1), g, 
has the simple form of Eq. (6): 
 

 
𝑔൫𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)൯ = diag(σଵ, σଶ, σଷ, σସ, σହ) (6) 

 
Naturally, not all states of the building are observed. 
Instead, we are limited to the information available in 
the non-linear observation equation 
 

𝒚௞ = ℎ൫𝒙(𝑡௞)൯ = [𝑇௜(𝑡௞),  ϕ௛(𝑡),  𝑇ret(𝑡௞)]T (7) 
 
That is, we observe the average indoor air temperature 
𝑇௜(𝑡௞), the heat load ϕ௛(𝑡௞) = Φ(𝑡௞)൫𝑇for − 𝑇ret(𝑡௞)൯, 
and the return temperature 𝑇ret(𝑡௞). Recall that the 
supply temperature is known and is Tfor =  55 °C. 

2.3 Model parameter estimation 

 We use the software CTSM-R [9] to estimate the 
parameters in the continuous-time stochastic model. The  
parameter estimation is based on the maximum 
likelihood principle [16]. That is, we maximise the 
likelihood function, which is a function of the 
parameters 

 

ℒ(𝛉) = 𝑝(𝒙଴) ෑ 𝑝(𝒚௞|𝒴௞ିଵ; 𝛉)

ே

௞ୀଵ

(8) 

 
Where 𝒴௞ିଵ = {𝑦௞ିଵ, 𝑦௞ିଶ, ⋯ , 𝑦଴} is the information 
up till time 𝑡௞ିଵ, p is the probability of observing 𝒚௞ 
with the model in Eq. (5) and Eq. (6) given the 

parameters θ and the information 𝒴௞ିଵ. Given the 
model structure in Eq. (5) and Eq. (6), as well as 
appropriate informative data, any unknown parameters 
can be estimated.  
 Table 1 lists the parameter estimates from the 
estimation procedure. Fig. 3 compares the fit of the 
resulting model to the data and indicates a good match. 
It shall be noted that the return temperature 
measurements are not representative when the heat load 
is zero and the water flow in the building is zero. We 
thus put very low weight on the return temperature 
observations in the estimation procedure in these time 
intervals (indicated by the grey periods in the figure). 

3 Non-linear model predictive control: a 
multiple shooting method 

 This section introduces a direct multiple-shooting 
method for solving the particular NMPC problem. It 
also discusses a method to discretise the optimisation 
problem to make it numerically tractable. The 
optimisation problem lies the basis for computing the 
set-points for the radiators. However, solving the 
optimisation problem requires us to know the entire state 
of the system, 𝒙. For reconstructing the system states 
based on observation, 𝒚, the continuous-discrete 
extended Kalman filter is used [17]. 

 This paper considers an optimal control problem on 
the following form 

 

min
௫,௨

  φ = න κ൫𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)൯
௧ೖା்

௧ೖ

d𝑡 (9𝑎) 

Figure 3. Experimental data together with the estimated heat load, air temperature, and return water temperature by the model. 
The greyed-out periods in the secondgraph indicates periods where the return temperature is disregarded, because the 
observations do not represent the actual return temperature 
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𝑠. 𝑡.       𝒙(𝑡௞) = 𝒙(0)                             (9𝑏) 
𝒙̇(𝑡) = 𝑓൫𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)൯ (9𝑐) 
𝑢௠௜௡(𝑡) ≤ 𝑢(𝑡) ≤ 𝑢୫ୟ୶(𝑡) (9𝑑) 
𝑇min(𝑡) ≤ 𝑇௜(𝑡) ≤ 𝑇max(𝑡) (9𝑒) 

 
where T is the prediction and control horizon, κ is the 
cost function, and 𝑓൫𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)൯ is the model 
equations in Eq. (5). 

3.1 Discrete-time approximation of the optimal 
control problem 

 To make the optimal control problem in Eq. (9) 
numerically tractable, we propose a multiple shooting 
method to discretise the problem. Multiple shooting is a 
simultaneous method in the sense that the state variables 
also are a part of the optimisation problem. 

The problem is discretised in the sense that the 
system consider 𝑥 at discrete time points 𝑡௞, 𝑡௞ାଵ, …,  
𝑡௞ାே starting from the initial time 𝑡௞ till 𝑡௞ + 𝑇. Now, 
define a function ϕ൫𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)൯ that computes the 
solution to the following initial value problem 

 
𝒙̇(𝑡) = 𝑓൫𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)൯                    (10𝑎) 

𝒙(𝑡௞) = 𝒙௞  ,  (initial condition)   (10𝑏) 
 
at time 𝑡௞ାଵ. Hence, ϕ൫𝒙(𝑡௞), 𝑢(𝑡), 𝒅(𝑡)൯ = 𝒙(𝑡௞ାଵ) is 
a function that integrates the system forward to the next 
time instance given the input and disturbances in the 
time interval [𝑡௞, 𝑡௞ାଵ[. To simplify the optimisation 
problem, we assume that the set-points, 𝑢(𝑡), and the 
disturbances, 𝑑(𝑡), are piece-wise constant in each time 
interval [𝑡௞, 𝑡௞ାଵ[ 
 

𝑢(𝑡) = 𝑢௞ ,  𝑡 ∈ [𝑡௞ , 𝑡௞ାଵ[ (11𝑎) 
𝒅(𝑡) = 𝒅௞ ,  𝑡 ∈ [𝑡௞ , 𝑡௞ାଵ[ (11𝑏) 

 
The optimal control problem therefore simplifies to 

min
{𝒙}ೖసభ

ಿ ,{𝒖}ೖసబ
ಿష𝟏

  𝜑 = ෍ 𝐿௞(𝒙௞ , 𝑢௞ , 𝒅௞)

ேିଵ

௞ୀ଴

(12𝑎) 

𝑠. 𝑡.        𝒙௞ = 𝒙(0)                          (12𝑏) 
𝒙௞ା𝟏 = 𝜙(𝒙௞ , 𝑢௞ , 𝒅௞) (12𝑐) 

𝑢௠௜௡,௞ ≤ 𝑢௞ ≤ 𝑢୫ୟ୶,௞               (12𝑑) 
𝑇min,k ≤ 𝑇௜,௞ ≤ 𝑇max,k            (12𝑒) 

 
In the above, 

𝐿௞ = න κ(𝒙(𝑡), 𝑢௞ , 𝒅௞)d𝑡
௧ೖశభ

௧ೖ

  (13) 

 
is the quadrature of 𝑥(𝑡) w.r.t κ in the time interval 
[𝑡௞, 𝑡௞ାଵ]. 
 For numerical computation of the minimisation 
problem in Eq. (12), we use CasADi [18], which offers 
easy numerical implementation and automatic 
differentiation for optimal control problems. 

4 Simulation results 

 This section presents the results of two simulation 
studies. The first simulation investigates the flexibility 
of the building. The second simulation investigates the 
ability of the NMPC to minimise the economic 
operational costs of heating the building (here, the 
objective is related to the minimisation of return 
temperature to the district heating, hence to the 
minimisation of penalty fees due to high return 
temperature to the grid). We use the Euler-Maruyama 
simulation scheme to simulate from the SDE-model and 

Figure 4. A small simulation of thermostatic set-point control of the building using a price signal that reflects peak hours and 
displays flexibility. The controller keeps the heat usage to a minimum during peak hours when the heat is expensive. 
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the continuous-discrete extended Kalman filter to 
reconstruct the system state. 

4.1 Simulation: Flexibility of the building 

 To investigate the flexibility of the building in a 
smart energy system, we use a cost function in the MPC 
that takes a price signal. In a flexibility setting, the price 
signal reflects how ''expensive'' it is to heat the building 
at any given time. We define the cost function as 

 
κଵ൫𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡), 𝑠(𝑡)൯                                     

= 𝑐(𝑡)Φ(𝑡)൫𝑇for − 𝑇ret(𝑡)൯ + 𝜌𝑠(𝑡) (14) 
 

where c is the price signal, s is a slack variable to 
soften the indoor air temperature constraints (to make 
the optimisation problem feasible outside of the 
constraints), and ρ is the slack penalty. Fig. 4 presents a 
simulation of the building model in Eq. (5) using the 
optimal control problem introduced in Section 3 with the 
cost function in Eq.(14). The control runs in a closed-
loop setting with the time between control inputs and the 
prediction horizon equal to one hour and 24 hours, 
respectively. Furthermore, the controller has access to 
the future weather disturbances. In the simulation, the 
heating price is simply designed in order to see the effect 
of the MPC. It is expensive at 100 DKK per kWh during 
peak hours in the mornings and evenings. The heat price 
is otherwise low at 10 DKK per kWh. As a result, the 
controller mainly heats outside peak hours and only does 
so if the indoor temperature gets too low. Due to the 
under-dimensioned heating system and the building's 
poor insulation level, the controller still needs to supply 
some heat during the peak hours to maintain the desired 

temperature. The results suggest that the building can 
supply some flexibility under these circumstances. 
However, considering that the outdoor temperature in 
Denmark can become even lower than in the present 
simulation, the building will have less flexibility in such 
situations. 

4.2 Simulation: Minimisation of operational 
costs by lowering return temperature 

 As a building owner in the Danish district heating, 
one pays an additional fee if the return temperature is 
high for two reasons. First, if the temperature difference 
is small, the mass flow rate needs to be higher. Second, 
high return temperature to the district heating sources 
decreases the production efficiency. The pricing scheme 
is very different between district heating areas. This 
holds for both the price of heat and the penalty for not 
cooling the return adequately. In the present analysis, we 
set it quite progressively, namely as follows: if the return 
temperature is above 40 °C, the heat price increases 2% 
per extra degree Kelvin of the return temperature. The 
cost-function where this is accounted for is 

 
κଶ൫𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡), 𝑠(𝑡), 𝑣(𝑡)൯ = 

𝑐(𝑡)𝛷(𝑡)൫𝑇for − 𝑇ret(𝑡)൯൫1 + 0.02𝑣(𝑡)൯ + 𝜌𝑠(𝑡) (15) 
 

where v is a slack variable that softens the upper 
constraint at 40 °C on the return temperature and the 
scalar 0.02 is the percent-wise increase in heat cost. 

Fig. 5 displays a simulation study of the building 
model in Eq. (5) using the cost function in Eq. (14). The 
figure also depicts a baseline, which uses a simple set-
point control that turns down the temperature during the 

Figure 5. A simulation study that compares a current standard set-point control in today’s buildings (Baseline) and the NMPC 
presented in this paper. The heat costs are constant at 0.71 DKK/kWh plus a penalty of 2% for each °C the return temperature is 
above 40 °C. Results suggest an economic reduction by around 10%. 
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night and back on during the day. The baseline 
represents the current practice in most buildings using 
rule-based control: a fixed set-point pattern used every 
day. This experiment reflects the actual economic costs 
of operating the building together with the extra fee 
when the return temperature is too high. The results 
demonstrate the emphasis the controller puts on keeping 
the return temperature below 40 °C while supplying 
enough heat to comply with the constraints. The actual 
economic costs associated with each control strategy 
during the one simulated month are 4522.9 DKK and 
4066.6 DKK for the baseline and MPC, respectively. 
This points toward economic savings of around 10% by 
using the proposed control strategy. Much of this 
reduction is explained by the ability of the controller to 
lower the return temperature and avoid extra penalties, 
which account for 382.2 DKK and 89.5 DKK, 
respectively for the two strategies. Especially during the 
cold periods, where extra heat is needed, the economic 
savings are high. The total energy use is reduced from 
5891.4 kWh to 5742.5 kWh (around 2.5%) by the MPC, 
which comes from the ability of the MPC to lower the 
temperature closer to the constraints. This optimisation 
and the lower return temperature not only benefit the 
building operators, but also benefits the district heating 
operators by significantly decreasing the amount of heat 
loss in the district heating system. 

It should be stressed that these results apply only to 
the current settings and may vary according to different 
district heating areas and pricing schemes. Also, in a 
realistic setup with meteorological weather forecasts, 
building occupants, etc., the control performance may 
be affected. 

5 Conclusion 

 This article introduced a non-linear grey-box model 
describing the heat dynamics of an old school building. 
This model enabled us to predict and control the future 
evolution of temperatures and heating in the building. 
We presented a NMPC method and used it in a 
simulation study to cast light on the benefits. The results 
suggest that smart control of the heat supply unlocks the 
building's flexibility and supplies economic savings of 
up to 10% under a particular, but realistic, pricing 
scheme. The specific savings may vary depending on 
the district heating area since pricing schemes vary. 
Also, the controller had access to the actual future 
weather disturbances, which in a realistic setting must 
be replaced with weather forecasts potentially 
decreasing the savings. Future work involves 
implementation of the NMPC in the building and 
investigation of how well individual rooms behave 
under the simplified model [19]. 
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