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Abstract. Rule-based control (RBC) strategies are often unable to execute the optimal control action, which 

leads to unnecessary energy consumption and suboptimal comfort. Model predictive control (MPC) is a 

dynamic control strategy for heating, ventilation and air-conditioning (HVAC) systems that is mostly more 

capable of performing optimal control actions. The identification process of predictive models is an essential 

aspect of MPC. However, this model identification process remains time consuming due to the large 

variation in buildings and systems. The aim of this paper is to determine guidelines to identify predictive 

grey-box models more time efficient, thus enhancing the applicability of MPC. 

This paper focusses on a case study building equipped with an all-air HVAC system, which combines 

ventilation, heating and cooling. Making both temperature and CO2-concentration key parameters to predict. 

The grey-box model represents an open zone in a landscaped office, making the influence of neighbouring 

zones an additional challenge. 

Different models for predicting the zone temperature and CO2-concentration are identified, evaluated and 

validated using CTSM-R. The following aspects are studied: the dataset size, the influence of neighbouring 

zones, the difference between winter and summer conditions, number of states and the prediction horizon. 

A three state RC-model with the implementation of the zone temperature of one neighbouring zone is 

preferred for predicting the indoor temperature with an acceptable prediction horizon of one day. However, 

this temperature model is not suitable during sunny periods. A simple model representing a mass balance 

obtains accurate predictions of the zone CO2-concentration for a timestep of 15 minutes. For both model 

types the utilization of 5-day datasets is favoured over 12-day datasets due to a shorter monitoring period, 

lower prediction error and an easier parameter convergence. The usage of 12-day datasets is only preferred 

when an accurate estimation of the thermal inertia is pursued.   

1 Introduction 
Control strategies are implemented in heating, 

ventilation and air-conditioning (HVAC) systems to 

reduce energy use. A control strategy has two 

contradictory objectives, i.e., minimizing the energy 

consumption while maximizing the occupants’ comfort. 

Rule-based control (RBC) strategies are often unable to 

execute the optimal control action, which leads to 

unnecessary energy consumption [1]. Model predictive 

control (MPC) is a dynamic control strategy using 

predictive models and is more capable to achieve an 

optimal control action [2]. The identification process of 

predictive models is an essential part of MPC.  

Three model structures can be identified, i.e., white-

box based on only the physical characteristics of a 

building, black-box models using exclusively data and 

grey-box models which combine physical parameters 

and data [2]. This paper will focus on grey-box models 

due to their feasibility for dynamic systems and their 

knowledge concerning the buildings thermal behaviour 

[3].  

Although  a general toolbox  to identify grey-box 

models exists [4], the identification process stays time 

consuming [2]. This paper aims to determine guidelines 

for a more efficient grey-box model identification 

process by identifying, evaluating and validating 

multiple predictive models. 

Most research regarding MPC focusses on hydronic 

systems and less on air-based systems [5]. Therefore, 

this paper will identify predictive models for an all-air 

HVAC system. This system type combines ventilation, 
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heating and cooling. The control of this system type 

deals with an extra contradiction, i.e., ventilation and 

heating demand. As a result, a suitable MPC strategy 

should have accurate predictions of both room 

temperature and CO2-level to determine the optimal 

control action for the all-air system.  

The grey-box model in this paper represents an open 

zone in a landscape office in a case study building. This 

leads to a supplementary challenge, i.e., how to 

implement the influence of neighbouring zones in the 

predictive model? 

The results in this paper are translated into 

recommendations for a more efficient grey-box model 

identification process for landscaped offices 

conditioned by an air-based system. These guidelines 

should lead to an improved applicability of MPC for all-

air systems. This paper is based on the first author’s 

Master’s thesis [6]. 

2 Case study building 

2.1 Building and systems 

The case study building is an office building from 2012 

situated in Heverlee (Belgium) and has a building 

envelope with an average U-value of 0.38W/m²K [7]. 

The office building contains four floors, of which two 

office floors, each floor is approximately 1280m², with 

two landscaped offices each. Every landscaped office is 

divided into three office zones as indicated on Figure 1. 

These zones are not physically separated from each 
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other, which makes influence from neighbouring zones 

possible. The control of the heating and ventilation 

happens independently for each office zone. The office 

zones are not actively cooled.  

The building uses an all-air HVAC system 

consisting of an air-handling unit (AHU) where the air 

is pre-heated two times, i.e., by the thermal wheel and 

central heating coil. Afterwards, the air is transported 

from the AHU to a circuit conduct in each floor. The 

inlet air is then transferred through branches to the office 

zones with inlet openings in the ceiling. The inlet air 

flow to an office zone is controlled by a variable air 

volume (VAV) unit, while the inlet air temperature is 

adjusted by a decentral heating coil.  

The setpoints, e.g., zone temperature setpoint of 

24.3°C, CO2 setpoint of 800ppm, and clock control, 

operational from 6 am till 6 pm, for the HVAC system 

are adjustable through the building management system 

(BMS). Furthermore, the BMS saves measurements 

from different sensors every 15 minutes.  

2.2 Office zone

This paper analyses the prediction accuracies of 

different grey-box models for a zone of the landscaped 

office in the case study building. The tested zone B is 

located on the top floor of the building and is enclosed 

by two neighbouring zones A and C (see Figure 1).  

Table 1 gives the properties of the tested office zone.  

Table 1. Properties of the tested office zone B 

Floor area 70 m² 

Volume 224 m³ 

Design occupancy 12 pers or 5.8 m²/pers 

Minimal ventilation 

flow rate 

63 m³/h 

Maximal ventilation 

flow rate 

420 m³/h or 35 m³/h.pers 

Maximum power 

decentral heating coil 

1900 W 

Window to wall ratio 

(WWR) 

0.29 

Orientation North east (NE) 

3 Method

3.1 Data acquisition and datasets

The building is monitored during two different periods, 

i.e., summer (July-August) and winter (November-

January) conditions. The data used for the identification 

and validation of the grey-box models is acquired from 

three sources. The first source is the BMS which saves 

measurement data from the sensors spread across the 

office building. The zone temperature, CO2-

concentration and air flow rate are used for constructing 

the datasets. The BMS measures the different states with 

a time step of 15 minutes. The second source is a 

database with measurements coming from a network of 

weather stations (Renkforce WH2600) near the case 

study building [8]. The distance between the building 

and the weather station is 1,1km. A time step of 16 

seconds is used in the database. Therefore, a resampling 

of the data into a time step of 15 minutes is necessary. 

The properties of the sensors used in the office building 

and weather station are given in Table 2. Finally, the 

occupancy in the office zones is determined through a 

survey of the employees. This survey involves the 

employees keeping track of their attendance per hour for 

one week. In addition, occupants are asked to what 

extend their presence in the monitored week deviates 

from an average week. A reference week of the actual 

occupancy per hour and per zone is determined. During 

the summer, the occupancy profiles are modified to deal 

with the absence of persons on holidays: the occupancy 

during July and August is assumed to be half of the 

occupancy during the other months. 

Table 2. Properties of the sensors 

Parameter Accuracy  
Indoor temperature (BMS) ± 0.15°C 

CO2-concentration (BMS) ± 30ppm + 

2% reading 

Outside temperature (weather station) ± 1°C 

Solar irradiation (weather station) ± 15% 

 

A total of eight datasets are constructed. Datasets 1-

4 have a dataset size of 5 days corresponding with one 

working week. While datasets 5-8 consist of 12 days of 

measurements which is equivalent to two working 

weeks with the enclosed weekend. Table 3 shows the 

datasets with the matching measurement period and 

weather and occupancy characteristics.    

3.2 Model identification

Since the case study building is equipped with an all-air 

HVAC system, a MPC should predict both the indoor 

temperature and the CO2-levels. Therefore, two model 

types are identified in this paper, i.e., temperature 

models for predicting the zone temperature and CO2-

models for predicting the zone CO2-concentration.  For 

 

Figure 1. Floor plan with neighbouring zone A, tested 

zone B and neighbouring zone C 
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each model type, eight predictive models are identified, 

evaluated and validated using the continuous time 

stochastic modelling (CTSM) toolbox for R [9]. An 

input dataset consisting of winter data is used for the 

model identification and evaluation. Hereafter, the 

identified models are validated using both winter and 

summer data shown in Table 3. The identification, 

evaluation and validation process of the sixteen models 

is done for both the 5-day and 12-day datasets.  

Table 3 Properties datasets 

n° Period Size Characteristics 
1 25/11/2019 – 

29/11/2019 

5 

days 

Low outside 

temperatures 

Low solar irradiation 

Normal occupancy 

2 02/12/2019 – 

06/12/2019 

3 27/01/2020 – 

31/01/2020 

5 25/11/2019 – 

06/12/2019 

12 

days 

6 09/12/2019 – 

20/12/2019 

7 20/01/2020 – 

31/01/2020 

4 
01/07/2019 – 

05/07/2019 

5 

days 
High outside 

temperatures 

High solar irradiation 

Low occupancy 
8 29/07/2019 – 

09/08/2019 

12 

days 

3.3 Model evaluation and validation

The model evaluation and validation process is based on 

the guidelines, specified within IEA EBC Annex 58 by 

Madsen et al. [4]. 

The model evaluation starts with a parameter control 

for each identified model determining the parameters 

significance and correlation. The parameter significance 

is evaluated by a t-test. A parameter is insignificant 

when the p-value exceeds 0,05. Two parameters are too 

closely linked when the correlation factor is above 

|0,98|. Afterwards, the preferable model complexity is 

determined by a likelihood ratio test between the 

different models based on their input dataset.  

The results are then further analysed through the 

model validation process.  For instance, the root mean 

square error (RMSE) and maximum errors achieved by 

the models for validation datasets are calculated. This 

evaluates the prediction accuracy of the models. The 

errors are calculated for multiple prediction steps, i.e., 

15min, 30min, 45min, 1h, 2h, 4h, 12h and 1day to 

determine the acceptable prediction horizon.  

Three different validation datasets measured during 

different periods, thus during different conditions, are 

used for the validation of the grey-box models. The 

validation datasets have different degrees of 

discrepancies from the input dataset, with the summer 

data (datasets 4 and 8) as the most deviating scenario. 

The suitability of the models in different conditions is 

determined by checking if the residuals are white noise 

or due to an inaccurate model, which is tested by the 

auto-correlation function (ACF) and the cumulated 

periodogram (CP). The test for white noise succeeds, 

meaning the residuals are white noise, if in the ACF not 

more than 5%-10% of the lag correlations exceed the 

95% confidence bound and no exponential decaying 

pattern from lag one can be determine and no cyclic 

behaviour is visible in the CP [4]. Hereafter, the 

residuals are plotted and analysed in detail. 

4 Results and discussion 

4.1 Temperature models

4.1.1 Identified models

Table 4 shows the properties of the developed 

temperature models and the used input dataset (see 

Table 3).  

Table 4. Temperature models 

Model 
name 

Included 
parameters 

Input dataset (n°) 

5 days 12 days 
Model 1 Base model 1 5 

Model 2 + PB 1 5 

Model 3 + TA 1 5 

Model 3a + TA - PB 1 6 

Model 4 + TC  1 5 

Model 4a + TC - PB 1 5 

Model 5 + TA - TC  2 7 

Model 5a + TA - TC - PB 1 5 

 

The dynamic heat transfer in the office zone is 

represented by a resistance-capacity (RC) model. The 

temperature models consist of differential equations of 

which the number corresponds to the amount of 

temperature states. The base temperature model (model 

1 in Table 4) is a two state RC model with the indoor 

temperature (TB) of zone B and the external temperature 

(Te) as the two temperature states. The base 2nd order 

model is made more complex up to a 4th order model by 

adding the number of occupants (PB) and the 

temperature states of neighbouring zones (TA, TC). 

Equation 1 is the differential equation for the indoor 

temperature of the most complex temperature model 

(model 5a in Table 4). 

 
dTB = {[1/(CB*RBe)*(Te-TB)]+ [1/(CB*RAB)*(TA-TB)]+ 

[1/(CB*RCB)*(TC-TB)]+ [(gA*Ps)/CB]+ (Ph/CB) + 
[(PB*0,070)/CB]}dt+ σi*dωi   (1) 

  

TB: Indoor temperature tested zone B [°C] 

Te: External temperature [°C] 

TA: Indoor temperature neighbouring zone A [°C] 

TC: Indoor temperature neighbouring zone C [°C]  

RBe: Thermal resistance inner shell façade [°C/kW]  

RAB: Thermal resistance separation between tested 

zone B and neighbouring zone A [°C/kW] 

RCB: Thermal resistance separation between tested 

zone B and neighbouring zone C [°C/kW] 

CB: Thermal capacity tested zone B [kJ/°C] 
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gA: Product of total solar energy transmittance (g) and 

effective area of the windows (A) [m²] 

Ps: Solar irradiation [kW/m²] 

Ph: Heating power of the heating coils [kW] 

PB: Occupancy in tested zone B [-] 

σi: Variance of the Wiener process [-] 

dωi: Wiener process [-] 

4.1.2 Parameter convergence and significance

The first step is to evaluate the models by analysing the 

parameters convergence and significance. A difference 

is noticeable between the temperature models identified 

on 5- and 12-day datasets (see Table 4). With the 5-day 

datasets it is possible to gain a parameter convergence 

using dataset 1 for all models except model 5, where 

dataset 2 needs to be used. The parameter convergence 

is harder to achieve when using 12-day datasets. Two 

models (model 3a and model 5) cannot become a 

parameter convergence using dataset 5. Model 5 cannot 

even obtain a parameter convergence for dataset 6, 

therefore dataset 7 has to be used for the identification 

of this temperature model. This demonstrates that a 

larger dataset size for this case results in a harder 

parameter convergence. 

The parameter control of the temperature models 

shows that all models, except model 5a, have one or 

more insignificant parameters for both dataset sizes. The 

parameter gA is considered insignificant in the majority 

of the models. This means that the solar heat transfer is 

neglected in the majority of the models. This can be due 

to the NE orientation of the tested zone making it 

difficult to estimate the gA-value. Furthermore, the 

global horizontal irradiance from the weather station is 

used, while the vertical solar irradiance measured at the 

building façade would be more accurate, but this data 

lacked.  

Another observation is that the models identified 

with 12-day datasets have few or none insignificant 

thermal capacities compared with models using 5-day 

datasets. This makes models using 12-day datasets more 

capable of predicting the thermal inertia of the building. 

This can be caused by the enclosed weekend that is 

measured in the 12-day dataset. During the weekend the 

building is not conditioned or occupied which makes it 

easier to determine the buildings thermal properties.  

4.1.3 Model complexity

The likelihood ratio test determines which model 

complexity is preferred. Based on the likelihood ratio 

test model 3 and 4 are the preferred temperature models 

identified with a 5- and, 12-day dataset respectively, 

thus showing a different result for both dataset sizes. 

Furthermore, the temperature models with an occupant 

parameter (model 2 and a-models) are not preferred 

above the models without such an occupant parameter. 

This indicates that the internal heat gains from 

occupants are distributed over other parameters in the 

models that lack an occupant parameter, which could 

lead to a less accurate estimation of the thermal inertia 

of the building. The next paragraph investigates if the 

same conclusions can be made based on the model 

accuracy.   

4.1.4 Model accuracy

Similar observations as in 4.1.3 can be obtained from 

Table 5 and Table 6, showing the RMSE and maximum 

errors from each model using a 5- and 12-day winter 

validation dataset respectively. A first observation valid 

for both dataset sizes is that the models with an occupant 

parameter (a-models) show higher prediction errors than 

models without this parameter, which is probably 

caused by the inaccurate occupancy measurement 

method. Models 3a and 5a using 12-day data are 

exceptions as other input datasets have been used to 

identify models 3a and 5.  Furthermore, it appears that 

the two-state models (Model 1 and 2) have a significant 

lower prediction accuracy than the three-state models 

(model 3 and 4) in both situations. In addition, the 4th 

order model 5 obtains lower prediction errors than the 

3rd order models 3 and 4 in the 5-day situation. This is 

mostly due to the fact that the validation dataset used for 

model 5 has a steadier course than the dataset used for 

models 3 and 4, which makes temperature predictions 

easier. The four-state model 5 shows higher maximum 

errors in the 12-day situation, due to the fact that model 

5 is validated with a more varying dataset. Model 5 is 

excluded from the comparison since it is validated using 

another dataset than the other models.   

The most preferable model in the 5-day scenario is 

model 3, since this model obtains the lowest maximum 

errors of all models except model 5. The RMSE 

obtained by model 3 is higher than with model 4 for high 

prediction steps, but the deviation is neglectable.  

Table 5. Prediction errors for temperature models using 5-

day datasets. The relative low and high prediction errors are 

coloured in green and red respectively. 

  RMSE [°C] 
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o
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 4
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 4
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M
o

d
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 5
 

M
o

d
el

 5
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15min 0.11 0.12 0.11 0.12 0.11 0.12 0.09 0.11 

30min 0.15 0.17 0.15 0.16 0.15 0.16 0.11 0.15 

45min 0.17 0.20 0.17 0.19 0.16 0.18 0.13 0.17 

1h 0.18 0.22 0.18 0.20 0.17 0.20 0.13 0.17 

2h 0.19 0.24 0.19 0.22 0.18 0.22 0.15 0.19 

4h 0.21 0.26 0.19 0.23 0.18 0.23 0.17 0.19 

12h 0.26 0.31 0.20 0.25 0.18 0.26 0.19 0.22 

1 day 0.29 0.38 0.22 0.29 0.18 0.30 0.16 0.25 

 Maximum error [°C] 

15min 0.73 0.73 0.74 0.68 0.70 0.70 0.48 0.68 

30min 0.91 0.87 0.77 0.78 0.74 0.81 0.60 0.77 

45min 0.94 0.88 0.73 0.76 0.74 0.81 0.61 0.74 

1h 1.00 0.90 0.71 0.77 0.76 0.84 0.60 0.76 

2h 0.88 0.87 0.66 0.79 0.80 0.73 0.61 0.77 

4h 0.85 0.89 0.68 0.81 0.82 0.76 0.74 0.80 

12h 0.91 0.90 0.70 0.82 0.82 0.82 0.70 0.81 

1 day 0.91 0.95 0.72 0.82 0.81 0.84 0.70 0.82 
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Table 6. Prediction errors for temperature models using 12-

day datasets. The relative low and high prediction errors are 

coloured in green and red respectively. 

 

Models 4 and 5a are the most accurate temperature 

models using 12-day datasets. The RMSE obtained with 

model 5a is lower than obtained with model 4. The 

deviation between the maximum errors obtained with 

both models is maximum 0.07°C, which is below the 

sensor accuracy of 0.15°C. In this case the least complex 

model 4 is preferred over model 5a. 

It has been found that the most accurate model 

differs in the 5- and 12-day situation. There are no 

significant differences between the RMSE obtained with 

model 3 (5day) and 4 (12day). On the other hand, the 

deviation between the maximum errors runs up to 

0.18°C, which exceeds the temperature sensor accuracy. 

Therefore, model 3 using 5-day datasets is favoured 

above model 4 using 12-day datasets. Furthermore, the 

use of 5-day datasets is preferred over 12-day datasets 

since it requires a shorter monitoring period. 

4.1.5 Impact changing conditions

The usability of the most accurate model, i.e., model 3 

with a 5-day dataset, in different conditions is 

determined by comparing the ACF, CP and the residuals 

course on winter and summer validation data. Figure 2 

shows the ACF and the CP in the case of winter and 

summer conditions. It is visible that the residuals stay 

within the 95% confidence boundaries for the winter 

data, which means the residuals can be classified as 

white noise. On the contrary, the test on white noise fails 

when using summer data. The residual course using 

winter data is analysed using Figure 3. The residuals 

course during the winter shows two types of peaks. The 

first type of peaks happens two times a day and matches 

the on and off switches of the heating system, meaning 

these peaks are due to the clock control of the HVAC-

system. The second type of peaks are due to inaccurate 

measurements, visible through the sudden drops in zone 

temperature and heat supply. The residuals of model 3 

when using summer validation data show a more 

fluctuating course, which could be due to the 

insignificance of the parameter gA in model 3 (see 

4.1.2). The temperature models in this paper neglect the 

solar heat gains through the windows, while the solar 

radiation reaches significant values during sunny days, 

leading to inaccurate predictions. 

 

 
Figure 2. ACF and CP for model 3 validated with winter 

(above) and summer (below) data 

 
 Figure 3. Plot of the residuals for a one step ahead 

prediction (15 min) of model 3 marking the clock control 

(blue) and inaccurate measurements (green) using winter 

validation data 

4.1.6 Prediction horizon

The prediction errors per prediction step, e.g. one step 

ahead = 15min, two steps ahead = 30min, etc., for model 

3 are given in Table 5. The table shows that the 

discrepancies between the maximum errors do not 
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o

d
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o
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el
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15min  0.13 0.10 0.10 0.09 0.10 0.10 0.10 0.10 

30min  0.20 0.14 0.14 0.13 0.13 0.14 0.13 0.13 

45min  0.25 0.16 0.16 0.14 0.15 0.16 0.14 0.14 

1h   0.30 0.17 0.17 0.15 0.16 0.17 0.14 0.14 

2h  0.45 0.20 0.19 0.15 0.19 0.21 0.15 0.16 

4h 0.69 0.23 0.20 0.16 0.21 0.24 0.15 0.17 

12h 1.25 0.31 0.21 0.18 0.23 0.28 0.16 0.19 

1 day  0.97 0.41 0.22 0.19 0.25 0.31 0.16 0.21 

 Maximum error [°C] 

15min  0.88 0.78 0.79 0.70 0.80 0.81 0.74 0.80 

30min  1.47 0.82 0.79 0.82 0.80 0.87 0.89 0.80 

45min  1.94 0.97 0.80 0.83 0.86 1.04 0.91 0.83 

1h   2.10 0.99 0.78 0.82 0.87 1.07 0.90 0.80 

2h  2.42 0.87 0.78 0.85 0.84 0.95 0.95 0.82 

4h  2.43 0.93 0.80 0.90 0.85 0.91 1.02 0.85 

12h  3.06 1.11 0.89 1.05 0.84 0.95 1.15 0.81 

1 day  2.28 1.11 0.97 1.09 0.81 0.95 1.14 0.86 
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exceed the sensor accuracy of 0.15°C. Nevertheless, it 

is false to state that no practical differences are 

noticeable between the absolute prediction errors for the 

different prediction steps. As shown in Figure 3, the 

maximum errors are due to the clock control of the 

HVAC system or inaccurate measurements. A further 

model optimisation will not eliminate this type of 

prediction error. Therefore, the difference between the 

absolute errors, excluding the ones caused by the clock 

control, are determined based on the RMSE. The RMSE 

at a prediction step of 1 day is twice the RMSE at 15 

minutes.  Figure 3 shows the residuals for model 3 using 

a one step ahead prediction of 15 minutes. The 

prediction errors that are not caused by the clock control 

or inaccurate measurements vary between 0.1°C and 

0.2°C. A doubling of the RMSE at a 1-day prediction 

step means the absolute errors vary between 0.2°C and 

0.4°C.  

A prediction horizon of 15 minutes is acceptable if a 

prediction accuracy lower than the sensor accuracy 

(0.15°C) is pursued. The absolute prediction errors in 

other research [5], [10] range from 0.30°C – 1°C. 

Therefore, a prediction horizon of 1 day, obtaining a 

maximum error of 0.4°C, is acceptable considering the 

higher prediction errors in comparable literature. 

4.2 CO2-models

4.2.1 Identified models

Table 7 shows the properties of the CO2-models. 

Table 7. CO2-models 

Model name Included parameters 
Model 6 Base model 

Model 7 + Qinf 

Model 8 + PA 

Model 8a + PA - Qinf 

Model 9 + PC 

Model 9a + PC - Qinf 

Model 10 + PA - PC 

Model 10a + PA - PC - Qinf 

 

All CO2-models are one state grey-box models with 

a differential equation representing the mass balance of 

the CO2-concentration in the tested zone. The CO2-

concentration of the outdoor air is assumed to be fixed 

at 470ppm, i.e., the average outdoor CO2-level over the 

period 25/11/2019 – 20/12/2019. The base model 6 is 

modified by adding the infiltration rate (Qinf) and the 

occupancy of one or two adjacent zones (PA, PC). The 

occupancy of the adjacent zones is divided by a 

reduction factor (nA, nC). The reduction factor is 

estimated and its value can range from one to two. The 

implementation of the occupancy of the neighbouring 

zones is a method to determine the influence of the 

adjacent zones on the CO2-concentration of the testing 

zone. Using the CO2-concentration of the neighbouring 

zones would be more accurate, but this data was missing 

in the case study building.  Equation 2 is the differential 

equation of the indoor CO2-concentration for the most 

complex CO2-model, i.e., model 10a in Table 7. 

dCB={[(AF/3600)*(470-CB)+(PB+ PA/nA+PC/nC)*Gocc+ 
Qinf*(470-CB)]/224}dt+ σi*dωi  (2)  

  

CB: CO2-concentration in tested zone B [ppm] 

AF: Ventilation flow rate [m³/h] 

PB: Occupancy in tested zone B [-] 

PA: Occupancy in neighbouring zone A [-] 

PC: Occupancy in neighbouring zone C [-] 

nA: Reduction factor neighbouring zone A [-] 

nc: Reduction factor neighbouring zone C [-] 

Gocc: CO2-production per person [mg/s] 

Qinf: Infiltration flow rate [m³/s] 

σi: Variance of the Wiener process [-] 

dωi: Wiener process [-] 

4.2.2 Parameter convergence and significance

All CO2-models obtain a parameter convergence during 

the model identification for both dataset sizes without 

the need to change the input dataset. 

All parameters are significant in all models and for 

all dataset sizes, except for the reduction parameter nA 

in model 9 for a 5-day dataset. The parameter nA is not 

of great importance, thus its insignificance can be 

neglected. Furthermore, there are no correlations 

noticed between the parameters.  

4.2.3 Model complexity

The likelihood ratio test shows a similar result for both 

the 5- and 12-day scenario. In both cases, it appears that 

the models with an infiltration rate parameter are 

preferred above the ones without. The most complex 

model (model 10a) is the preferred model for both 

dataset sizes based on the likelihood ratio test. 

4.2.4 Model accuracy

The prediction accuracies achieved by the CO2-models 

for the summer validation datasets nuance the results of 

the likelihood ration test. Table 8 and Table 9 show the 

RMSE and maximum error obtained with each model 

with respectively the 5- and 12-day dataset. The 

deviations between the errors of the different models 

only exceed the sensor accuracy of 70 ppm a few times 

for large prediction steps of 12h and 1day. Both tables 

show lower errors for the models with the parameter Qinf 

(model 7 and a-models) at prediction steps of 2h and 

higher, but the maximum errors still exceed the sensor 

accuracy of 70 ppm. In practice, the prediction horizon 

is usually limited to 2h, due to the fast-changing 

characteristics of the CO2-concentration in a room. 

Therefore, the use of parameter Qinf is not categorised as 

an improvement for the prediction accuracy of CO2-

models. The implementation of the occupancy in 

neighbouring zones show little to no improvement in the 

models’ prediction accuracy. Therefore, the least 

complex model is preferred, in this case model 6. 

The discrepancies between the RMSEs obtained 

with model 6 using 5- and 12-day data respectively are 

neglectable. The maximum errors of model 6 using 5-

day data are lower for all prediction steps compared to 

using 12-day data. The deviation runs up to 122 ppm 
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which exceeds the sensor accuracy of 70 ppm. It should 

be noted that the deviation between the maximum errors 

do not exceed the sensor accuracy for prediction steps 

lower than 4h. This means that the difference in 

prediction accuracy is not noticeable in practice. 

Nonetheless, a 5-day dataset is preferred due to its 

shorter monitoring period resulting in a faster model 

identification process. 

Table 8. Prediction errors for CO2-models using 5-day 

datasets. The relative low and high prediction errors are 

coloured in green and red respectively. 
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15min  15 14 15 14 15 14 15 14 

30min  20 19 20 19 20 19 20 19 

45min  24 24 24 23 24 23 24 24 

1h   27 27 28 26 27 26 27 27 

2h 39 38 40 37 40 37 40 38 

4h 56 52 59 51 59 51 59 55 

12h 77 60 95 63 92 63 95 72 

1 day  74 46 111 45 106 49 111 45 

 Maximum error [ppm] 

15min  66 67 64 65 65 66 64 64 

30min  83 84 85 81 85 83 85 84 

45min  84 79 89 83 87 80 88 86 

1h   98 96 98 92 98 92 98 86 

2h 147 132 146 123 147 124 147 124 

4h 166 138 166 121 167 122 166 135 

12h 201 159 246 171 240 173 244 174 

1 day  183 123 230 132 223 139 228 110 

Table 9. Prediction errors for CO2-models using 12-day 

datasets. The relative low and high prediction errors are 

coloured in green and red respectively. 
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15min  14 14 14 14 14 14 14 14 

30min  18 18 19 18 19 18 19 18 

45min  23 23 23 23 23 23 23 23 

1h   27 27 28 27 27 27 28 27 

2h  40 38 41 39 41 39 41 40 

4h 60 56 64 57 63 57 64 61 

12h  91 77 109 81 105 81 109 89 

1 day  91 64 126 72 118 70 126 71 

 Maximum error [ppm] 

15min  70 68 72 69 71 68 72 70 

30min 94 91 97 93 96 92 97 96 

45min  117 118 122 117 121 117 121 120 

1h   129 136 124 134 125 133 124 127 

2h 178 175 187 169 184 169 187 165 

4h 265 227 274 210 272 213 274 219 

12h 253 253 278 230 269 237 281 212 

1 day 305 249 355 241 338 244 355 216 

4.2.5 Impact changing conditions

The applicability of model 6 using 5-day data during 

different conditions is determined by the white noise 

test. Figure 4 shows the ACF and CP for both winter 

and summer data. The white noise test is passed for the 

summer data, while the 95% confidence boundaries are 

exceeded with the winter data meaning the residuals 

cannot be categorized as white noise. This could mean 

the reference week of the occupancy matches the real 

occupancy better during the summer than winter. In 

contrast to the temperature models, no peaks can be 

determined on the residuals of the CO2-models. 

  

 

 

Figure 4. ACF and CP for model 6 validated with 

summer (above) and winter (below) data 

4.2.6 Prediction horizon

Model 6 with a 5-day dataset is determined as the 

preferred CO2-model (see Table 8). In contrast to the 

temperature models, the absolute errors vary 

significantly with different prediction steps. Maximum 

prediction errors lower than the sensor accuracy of 

70ppm can only be obtained with the prediction step of 

15 minutes. In literature [5], [11] CO2-models are often 

validated based on the RMSE. In this case a prediction 

horizon of 4h would be acceptable based on the RMSE. 

Nevertheless, this paper determines the accuracy of 

CO2-models mainly on maximum errors, leading to a 

short prediction horizon of 15 minutes. A higher order 

CO2-model could potentially extend the acceptable 

prediction horizon [12]. 

5 Conclusions and future work
This paper presents guidelines for grey-box model 

identification of predictive temperature and CO2-

models. The guidelines are determined by the results 
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obtained from the identification, evaluation and 

validation of multiple grey-box models for an all-air 

HVAC-system in a landscaped office of a case study 

building. Attention should be given in generalising 

following guidelines since they are based on just one 

case study building.   

A third-order model using 5-day datasets obtained 

the most accurate temperature predictions with an 

acceptable prediction horizon of maximum 1 day. 

Implementing the indoor temperature of one 

neighbouring zone strongly enhanced the prediction 

accuracy of the models. In contrast, the implementation 

of an occupancy parameter showed higher prediction 

errors, which could be caused by inaccurate 

measurements of the occupancy. Using accurate 

occupancy measurements could lead to improved 

prediction accuracies. Due to the orientation of the 

tested zone and the lack of solar irradiance 

measurements at the façade, the temperature models 

neglect the heat production due to the solar irradiance, 

which makes the temperature models not suitable during 

sunny periods.  

The simplest CO2-model is preferred and achieves 

accurate predictions for a short prediction horizon of 15 

minutes. More accurate measurements of the occupancy 

could extend the acceptable prediction horizon. 

Including the infiltration rate only delivers no or 

marginal prediction accuracy benefits over the base 

model. The method of implementing the influence of the 

neighbouring zones by the neighbouring occupancy is 

not accurate enough to obtain lower prediction errors. 

Furthermore, the effect of implementing the CO2-

concentrations of the neighbouring zones in the grey-

box models on the prediction accuracy should be 

investigated. 

The usage of 5-day datasets is preferred for both 

model types due to the shorter monitoring period, easier 

parameter convergence and mostly higher prediction 

accuracy. The use of 12-day datasets is only favoured 

for temperature models when an accurate estimation of 

the building’s thermal inertia is needed. This means that 

the use of 12-day datasets is recommended for 

implementing a MPC, since it will predict the 

temperature decay more accurately during 

unconditioned periods, e.g., weekends and holidays. 

Determining the most suitable model complexity 

based on the model’s prediction accuracy is preferred 

over the likelihood ratio test, since the model’s accuracy 

gives a more nuanced result.  

Further research is needed to study the usability of 

temperature models during sunny periods. Furthermore, 

the effect of a more accurate occupancy measurement 

method on the models’ prediction accuracy should be 

investigated. A next step should be to implement the 

identified models into a real predictive control system. 

To conclude, more research needs to be done in other 

case studies in order to generalize the results and 

guidelines. 
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