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Abstract. The building sector has to significantly reduce the total energy use. A predictive control 

could be a solution to control an HVAC system more energy efficiently since it takes into account 

the current measurements and the future demand. In this study a predictive control framework is 

implemented in an educational building with two lecture rooms. The airflow rate is controlled by 

VAV boxes based on measurements of CO2 concentration and operative temperature. The 

dynamic model used for optimization of the control input is a grey-box model, previously 

identified using measurement data. Weather forecasts and weekly lecture schedules are used as 

forecasts for the optimization of future control actions. The control actions resulting from the 

optimization are written to the set points for supply air temperature and VAV damper position 

using the BACnet interface. Results of the first trial indicate that the predictive control is able to 

control the room temperature and CO2 concentration, even with uncertainty introduced by the 

forecasts. Prediction errors observed were 0.17 ˚C for room temperature and 87 ppm for indoor 

CO2 concentration.  

1 Introduction 

Facing the climate change, the building sector has to 

significantly reduce the total energy use. Buildings 

worldwide are reported to use approximately 36% of the 

total energy use, and account for 39% of the total 

worldwide CO2 emission [1]. HVAC is reported to use 

50% of this energy use in buildings [2]. To reduce the 

high energy use HVAC systems can be optimized to use 

energy more efficiently. However, HVAC systems are 

challenging to control, due to time varying dynamics 

and varying internal/external disturbances [3], [4]. 

Currently, most used control strategies in buildings are 

still PI or PID controllers, where the specific parameters 

are tuned based on simple rules and knowledge of the 

engineer [3]. However, a control strategy that is both 

reactive and predictive could result in a more energy 

efficient control [5]. Therefore, a model predictive 

control (MPC) could be a solution to control an HVAC 

system more energy efficiently, since it takes into 

account the current measurements and the future 

demand. Already in buildings with hydronic systems the 

reported energy reductions after implementation of a 

predictive control are significant [6], [7]. However, the 

question remains if MPC also has an energy saving 

potential for all-air systems, since the time dynamics of 

the system are shorter compared to hydronic systems. In 
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addition, for all-air systems the impact of predictive 

control on the energy use might be smaller since the 

system is fast responding, reducing the possibilities to 

shift the demand. For all-air systems there is often a 

contradiction between ventilation demand to guarantee 

the indoor air quality (IAQ), and heating demand for 

thermal comfort. Since, the system uses a feedback 

controller it is even more challenging to balance 

between the ventilation demand and the heating 

demand. Furthermore, the occupancy pattern can be 

varying over time resulting in changing dynamics inside 

the room. To optimize the control of an all-air system, a 

predictive control could be used to solve the dual 

optimization problem between the fresh air demand and 

the heating demand.  

One of the earlier examples of implementation of a 

predictive control for an all-air system is shown in [8]. 

In this study a grey box model is used to predict the 

future states and control the airflow based on CO2 and 

temperature predictions. The reported energy saving 

was 20% of the total energy use in an office building. 

However, results indicated that in all zones, except one, 

CO2 levels post retrofit were at maximum 600 ppm, 

indicating a low occupancy density. In  a similar study 

[9], an optimized supervisory MPC was implemented in 

two commercial buildings to control the room 

temperature. The trial demonstrated that the 

implemented predictive control could minimize the total 
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energy use of the HVAC system by 19% up to 32%, 

while even improving the thermal comfort. In addition, 

the performance of an MPC can also be related to the 

conditions inside the building. In buildings with an 

alternating occupancy the energy savings in simulations 

were reported up to 60% for an MPC compared to a 

more homogenous occupancy [10]. This indicates the 

energy saving potential for MPC in large spaces served 

by all-air systems with intermittent use. However, in 

literature there are not many examples of real 

implementation for MPC of an all-air system controlling 

both the room temperature and CO2 concentration in 

large spaces with intermittent use. This paper presents a 

method to implement a predictive control for a smart 

controlled ventilation system in an educational building.  

 The challenge for implementation of predictive 

control in real buildings is the effect of uncertainty 

related to the forecasts and unexpected changes in the 

room. In addition, a simple grey-box model is used to 

generate predictions. Since the forecasts are not perfect, 

the impact of this uncertainty on predictions is studied 

during operation. This paper presents the first trial 

results of the operation for the all-air system, and 

evaluates the performance of the implemented 

predictive control. The paper is structured as followed. 

First, a description of the case study building is given. 

Afterwards, the MPC framework used is presented and 

described, including the optimal control problem. The 

third section describes the implementation of the 

predictive control in the case study building. In the 

fourth section results are presented of the first 

experimental trial. Finally, a conclusion is given 

summarizing the main findings after implementation of 

the predictive control.  

2 Case study building 

For this research, an existing university building is 

used as case study building. Figure 1, shows the outside 

view and cross-section of the test lecture rooms. The 

building is located at the Ghent Technology Campus of 

KU Leuven in Ghent, Belgium. The studied building 

includes two large lecture rooms with 140 m2 floor area 

and a maximum occupancy of 80 students each. The U-

value for the building envelope is 0.15 W/m2K. The 

building is built in 2014 according to the Passive House 

standard. Balanced mechanical ventilation is provided 

with a total airflow supply of 4400 m³/h for two lecture 

rooms. Fresh air is supplied by air diffusers 

(displacement ventilation) in each corner of the room, as 

indicated in Figure 2. The air handling unit (AHU) 

regulates the VAV dampers by sending a request signal 

to control the airflow, based on CO2 concentrations and 

operative temperature in the lecture room. Each room is 

a single zone with a supply and return VAV. Set point 

for CO2 and indoor temperature (heating) are set at 

respectively 1000 ppm, and 22 °C. During weekdays the 

AHU is switched on at 7:30, and switched off at 18:00h.  

 

   
                                                                    

   
Figure 1. Outside view of the test building (above), cross-

section of the building (below)  
 

For heating purposes, the air is preheated by air-to-

air heat recovery, i.e. two cross flow plate heat 

exchangers connected in series with an efficiency of 

78%. Additionally, a heating coil of 7.9 kW is integrated 

in the supply ducts of each lecture room. A modular 

bypass is included.  

The building includes an extensive building 

monitoring system (BMS). A set of sensors has been 

installed to monitor indoor and outdoor conditions.  

 

 
 

Figure 1. Floor plan of the studied lecture room on the first 

floor, blue arrows indicate the supply air in each corner and 

red arrow indicates the location of the extract air 

 

A weather station is located on the roof of the building 

and monitors the main outdoor parameters: global 
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horizontal irradiation, the outdoor temperature, relative 

humidity and the wind speed and direction. For the 

indoor conditions, the indoor temperature, the CO2 

concentration and the indoor humidity are continuously 

monitored. The occupancy of the lecture room is 

measured by use of counting cameras which were 

installed in the lecture room. 

3 Predictive control framework 

Ventilation control is often non-linear resulting in an 

MPC with a control problem that can be complex to 

solve, due to the non-linear constraints. The aim of this 

all-air MPC is to control the supply air temperature and 

airflow rate to minimize the energy use. At the same 

time we want to guarantee the indoor environmental 

quality (IEQ), by maintaining the CO2 levels and the 

room temperature below the predetermined set points. 

The ventilation energy supplied to the zone,  given in 

equation 1, is the parameter that is optimized within the 

all-air MPC. This parameter includes the two controlled 

variables, supply air temperature (Tsupply) and the airflow 

rate (mair).  

 

Qvent = mair*ρ*(Tsupply-Troom)      (1) 
 

The complete predictive control framework 

implemented in the building, as shown in Figure 3, 

controls the VAV boxes in the ventilation system for 

each room and the heating coils connected to each air 

supply duct. In step one of the non-linear MPC 

framework the forecast of solar radiation, outdoor 

temperature, and occupancy are collected and forwarded 

to the predictive controller. For occupancy, the number 

of persons are obtained from the weekly lecture 

schedules, made available by the university 

administration. The comfort criteria include the heating 

set point and minimum airflow rate set point that 

changes over time. In step 2, a previously identified 

grey-box model [11] is used as prediction model in the 

predictive controller. This grey-box model of the room 

consist of four states: thermal mass temperature, indoor 

air temperature, supply air temperature and indoor CO2 

concentration. At each time step a prediction is made of 

all these four states. Based on these predictions the 

future control action is optimized.  

 

To solve the remaining OCP the following multi-

objective cost function, shown in equation 2, is defined 

to minimize the energy use with respect to the indoor 

CO2 concentration, and room temperature. The slack 

variables zCO2 and z are used for the comfort constraints 

to penalize exceeding the set point and to avoid using 

hard constraints. This is needed to guarantee the IEQ 

while reducing the energy use. For the room temperature 

a lower and upper bound is defined, where for CO2 

concentration the set point is set at 1000 ppm. The 

weight factors used for each cost function parameter are 

determined by using a Pareto Front to obtain the Pareto 

optimal solution.   

 

 
Figure 3. Non-linear MPC framework using a grey-box model 

to control the airflow rate and supply air temperature of the 

ventilation system 
 

 

  𝑀𝑖𝑛 ∑
(𝑧𝐶𝑂2)2 +  (𝐴𝑖𝑟𝑓𝑙𝑜𝑤)2 + 

(𝑧)2 + (𝑄𝑣𝑒𝑛𝑡)2
𝐻𝑝
𝑘=𝑂      (2) 

 

Subject to: 

CO2;room ≤ 1000 ppm + zCO2 

Airflow ≥ 0 m3/h 

Airflow ≥ 400 m3/h (7:30 – 18:00 h) 

Airflow ≤ 2200 m3/h 

zCO2 ≥ 0 

Troom ≥ 16 ˚C – z 

Troom ≥ 22 ˚C – z (7:30 – 18:00 h) 

Troom ≤ 26 ˚C + z 

z ≥ 0 

-6 kW ≥ Qvent ≤ 12 kW 

 

The jModelica framework [12] is used to define and 

solve the resulting optimal control problem (OCP). To 

solve the optimization problem for this non-linear MPC, 

the direct collocation method [13] is used, that is the 

default optimization algorithm present in jModelica. In 

the direct collocation method the non-linear problem is 

solved using polynomial splines. The thermal mass 

temperature is an unmeasured state present in the grey-

box controller and is estimated using an unscented 

Kalman filter (UKF). In the UKF at each time step the 

prediction of the state for the thermal mass temperature 

is corrected based on measurements of the room 

temperature. This was needed since this parameters is 

not measured in the case study building. The OCP is 

solved every time step (15 minutes) in which the optimal 

control output is calculated for the complete prediction 
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horizon. The prediction and control horizon used in this 

MPC framework is 8 steps ahead (i.e. 120 minutes).  

In the final step of the MPC framework the 

optimized control output, supply air temperature and air 

flow rate, is sent to the AHU. Here the set points for the 

VAV damper position and the supply air temperature are 

set accordingly. At each time step, the future 

disturbances and constraints are updated and passed to 

the OCP to obtain the next control input trajectory. 

3.1 Implementation of predictive control in the 
building 

In this educational building the AHU control is 

connected to a BACnet interface with the building 

monitoring system. The existing BACnet interface is 

used to implement the predictive control framework. 

Using a BACnet/IP driver, available through the Python 

package BACØ [14], measurement values can be read 

and control actions can be written to the desired set 

point. To switch back to a rule based control (RBC) the 

release of the BMS can be deactivated to enable a RBC, 

ignoring all the previously written set points by the 

predictive controller.  

The complete framework used for the predictive 

control, as illustrated in Figure 4, is written in Python 

where each part of the process is in a separate Python 

file. Each task is executed at a fixed time interval of 15 

minutes. The complete process is running on an 

industrial computer (IPC), located in the technical room 

of the building. This IPC is also used for the lighting 

control and for storage of building monitoring data. Data 

is exchanged between the different tasks using JSON 

files containing the essential information (e.g. forecasts, 

optimized control set points, estimated states) to execute 

a process. The first process considers reading the 

measurement values and obtaining the weather 

forecasts. Measurement values are read using the 

BACnet related objects. The analog input objects for 

room temperature and room CO2 concentration are read 

to update the measurement values at each time step. 

These two parameters are needed in the optimization 

and estimator tasks respectively. The forecaster uses an 

existing weather forecasting API DarkSky [15] to obtain 

hourly updated forecasts of the outdoor temperature and 

the cloud-cover. The global horizontal irradiation (GHI) 

is calculated using the clearsky scaling algorithm, 

present in the pvlib python package. Based on the cloud 

cover the solar radiation forecasts is computed for the 

building location. In addition, the forecasts include the 

weekly lecture schedule that is used for occupancy 

forecasts.  

The second process, MPC.py, considers the 

predictive control for the all-air system. The optimizer 

is based on the MPC object, available in jModelica, 

where modifications have been made to enable the 

update of disturbances at each time step in the 

optimization process, as illustrated in Figure 3. The 

optimized airflow rate obtained from the optimizer is 

translated to the requested VAV damper position needed 

in the next step.   

The third process involves writing of the optimized 

control action to the corresponding BACnet objects. In 

BACnet the analogue values for VAV damper request 

position and the minimum supply air temperature are 

written for the two lecture rooms. This involves 

translating the optimal airflow rate to a damper position. 

  

 

 

 

 

Figure 4. Implementation of the predictive control framework coupled with the building monitoring system 
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4 Results 

Implementing a predictive control in a building 

involves some uncertainty present in the forecasts for 

both the weather and occupancy. In addition, 

unexpected changes might occur regarding the 

occupancy. In Figure 5, the hourly weather forecast 

errors are shown for the outdoor temperature and the 

global horizontal irradiation (GHI). The forecast error 

here is defined as the forecasted values obtained from 

the weather forecast API minus the measured values 

from the local weather station. For the GHI only the 

values during daytime are considered. It is observed that 

the highest frequencies are found for the value 0 for both 

the outdoor temperature and the GHI, indicating an 

accurate forecast. However, large errors can occur when 

using weather forecasts form existing applications. GHI 

is especially sensitive to large errors up to 300 W/m2 

during days that are partly cloudy indicating that this 

parameters is difficult to forecast accurately. These 

results indicate that although a weather forecast API is 

used there is still some uncertainty in the forecasts. 

 

 

 

Figure 5. Weather forecast error based on 1-hour forecasts 

for outdoor temperature and global horizontal irradiation 

(GHI) during the evaluated period (2 – 6 March 2020) 

To evaluate if the written BACnet set points are 

respected by the ventilation system the optimized VAV 

damper position and supply air temperature are 

compared to the measured values in Figure 8. Overall 

we can see that the optimized actions derived from the 

MPC are actually observed for the controlled 

parameters. During night-time the measured values for 

supply air temperature shows large difference up to 8˚C, 

however this is a result of no airflow since the AHU is 

not active thus the difference can be ignored. 

Furthermore, it is observed that on the third and fourth 

day, during the middle of the day, there is a difference 

in supply air temperature of 7 ˚C between MPC and 

measured. This is the effect of the control for the bypass 

of the heat exchanger that is activated when one of the 

two lecture rooms exceeds a room temperature of 24 ˚C. 

 

Figure 7 presents the operation of the all-air system 

using the predictive control. The room temperature is 

controlled according to the requested temperature 

heating set point. The thermal comfort achieved with the 

predictive control is good. Only 12.5 K*h were noticed 

as discomfort hours, where the heating temperature set 

point of the room was not met. On the 5th of March there 

were problems with trapped air in the heating circuit, as 

illustrated in Figure 7, since the set point is not met and 

the supply air temperature did not increase. The CO2 

concentration inside the room is controlled by 

increasing the supply airflow rate as indicated. Total 

discomfort regarding CO2 was 559 ppm*h.  

The occupancy, indicated in Figure 7, is the expected 

occupancy according to the lecture schedule. However, 

it is shown that during the expected occupancy the CO2 

concentration did not increase on both the first day and 

fourth day. At the same time it is shown that the VAV 

damper position opens since occupancy is expected. The 

CO2 concentration however remains stable and did not 

increase, this indicates that the lecture is cancelled. In 

addition, on day 2 it is noticed that the end time, 

according to the lecture schedule is not respected.  

 

 

 

Figure 6. (top) room temperature by the prediction model 

during operating hours (2 – 6 March 2020 (07:30 – 18:00h)), 

(bottom) Predicted CO2 concentrations using only lecture 

schedule or corrected forecast based on measured CO2. 
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To avoid mismatch between expected occupancy 

and actual measured occupancy we used a reactive and 

predictive approach. To correct the occupancy forecast 

due to cancelled classes or different start or end time, the 

forecast of the next time step is corrected using the 

estimated CO2 room concentration. For the remaining 

time steps in the control horizon the lecture schedule is 

used for the forecast of occupancy. The results depicted 

in Figure 6 shows that the corrected CO2 concentration, 

based on both measurement and forecasts, produces 

better predictions compared to the lecture schedule 

(only forecasts). The predictive control framework 

relies on accurate predictions of the room CO2 

concentration and the room temperature. Figure 6 

illustrates the one step ahead prediction error for the 

room CO2 concentration and room temperature. The 

predictions of these two parameters are affected by 

uncertainty in forecast of both the weather and 

occupancy data. Often in simulation studies a perfect 

prediction is assumed, however this can result in large 

errors, especially for CO2, as indicated in Figure 6. In 

some cases the one step ahead prediction error using the 

lecture schedule resulted in an error up to 1800 ppm 

while with using the corrected value, based on the 

measurements, the error is at maximum 300 ppm. For 

room temperature it is indicated that the highest 

frequencies are found for the smallest prediction errors 

in the range of -0.5 up to 0.5˚C. The mean prediction 

error for room temperature during this period was 

0.17˚C.  

 

 

 

Figure 7. Operation of the ventilation system with a Grey-box controller implemented in a case study building 

 

 

Figure 8. Optimized control inputs derived from the MPC and measured supply air temperature and VAV damper position 
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5 Conclusion 

This paper presented the first trial results for the 

implementation of a predictive control for an all-air 

system. In general, the results indicate that a predictive 

control can be used to control the all-air ventilation 

system while guarantee the IEQ. A relative simple grey-

box model with four states is used to predict the room 

temperature and CO2 concentration. Using an available 

weather forecast tool and weekly lecture schedules, 

internal and external disturbances are forecasted. The 

existing BACnet interface, present in the AHU control, 

is used to write the optimized control inputs. 

Measurement results of the supply air temperature and 

VAV damper position indicate that the written control 

actions through BACnet are respected. Results for the 

operation of the all-air system indicated that room 

temperature and indoor CO2 concentration could be 

predicted with a high accuracy, even regarding the 

uncertainty related to real implementation of MPC. The 

prediction error observed for room temperature was 

0.17˚C, and for CO2 concentration 87 ppm. The IEQ is 

guaranteed using a cost function for the optimization 

that minimizes both the room temperature and CO2 set 

point violations while minimizing the energy use. 

Results indicated a few violations for room temperature 

and CO2 concentration, but in general the MPC 

framework is able to control the building indoor climate 

and air quality.  

In the future a shorter time step of 5 minutes will be 

tested, since CO2 concentration is a fast responding 

parameter. In this way, using the measurement update, 

unexpected changes can be corrected in the optimization 

process. Furthermore, the temperature set point will be 

adapted based on the occupancy status of the lecture 

room to introduce an occupancy based predictive 

control for further reductions of the energy use.  
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