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Abstract. In the transformation of the energy system, natural gas energy is regarded as a buffer energy. 
How to make a reasonable energy distribution and effectively predict its production is very significant. In 
the work of this paper, a grid-optimized fractional-order non-homogeneous grey model is used to predict the 
natural gas energy production in the United States and obtain reliable results. This paper first introduces the 
prediction method and prediction mechanism. Then the model is optimized to make the prediction effect 
more prominent. The natural gas energy prediction results show that this method has high prediction 
accuracy compared with other methods, which means that the method proposed in this paper can be used as 
an effective tool for short-term forecasting of natural gas production in the United States and play an 
auxiliary role in energy forecasting. 

1 Introduction 

Energy has become a problem that every country must 
pay attention to. Global energy demand is expected to 
increase by 35% in 2035[1]. With the popularization of 
low-carbon policies, the gradual transition of world 
energy from a high-carbon to a low-carbon system will 
reduce the burden of energy scarcity to a certain extent. 
Among them, natural gas has always been a very 
important energy source in the world. As a relatively 
clean fossil fuel, it not only occupies an important 
position in power generation, but is also a raw material 
for the manufacture of various chemical products[2]. The 
BP Statistical Review of World Energy pointed out that 
natural gas resources are likely to become the second 
largest energy source in the world[3]. Therefore, 
studying the natural gas energy production of the world's 
industrial power, the United States, has certain 
significance for energy development. 

Among many research methods, the grey system 
theory proposed by Professor Deng stands out for its 
advantages of small sample size, small calculation 
workload and high prediction accuracy[4]. In the 
development of the grey model, Cui et al. constructed a 
new model to improve the prediction accuracy of the 
data sequence that approximates the characteristics of 
non-homogeneous exponential law[5]. Xie et al. 
obtained two new models by discretizing the traditional 
grey model and the non-homogeneous grey model[6]. In 
terms of the accumulative generation sequence of the 
grey model, Wu et al. proposed a fractional operator to 
improve the method of data accumulation[7], which 
provides a basis for the subsequent research on the 
fractional model of many scholars[8-9]. In terms of 
natural gas energy prediction, Li et al. used particle 
swarm optimization to optimize the non-homogeneous 
discrete model and achieved good results[10], and Zheng 

et al. verified the optimization of the fractional Bernoulli 
model with the moth flame optimization (MFO) 
algorithm based on the production and consumption of 
natural gas[11]. 

The rest of this article is organized as follows. 
Section 2 introduces the non-homogeneous grey model, 
fractional accumulation operator and one-step rolling 
forecast mechanism. Section 3  introduces the method of 
optimizing nonlinear parameters. In Section 4, the 
proposed method is verified through the case of natural 
gas production(dry) in the United States and the Section 
5 gives the conclusion. 

2 The non-homogeneous grey model 

The raw data sequence is               0 0 0 01 , 2 , ,Y y y y n  , and 

its first-order accumulation generating sequence is 

              1 1 1 11 , 2 , ,Y y y y n  , which        1 0

1

k

i

y k y i


  . 

And the NGM’s first-order differential equation is: 
       
1

1dy t
ay t bt c

dt
    (1) 

where  , ,
T

a b c  is a grey parameter of the NGM. 

The discrete differential equation of Eq 1 is: 
       0 1y t az t bt c    (2) 

where    
       1 1

1 1

2

y t y t
z t

 
  is the sequence mean 

generated of consecutive neighbors of    1y k . Make: 
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The grey parameter of the NGM satisfies: 

  1

ˆ
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a
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

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 (4) 

The solution of the first-order differential equation 
Eq 1 is: 

         ˆ1 0 1

2 2

ˆ ˆ ˆ ˆˆ ˆ
ˆ 1 , 1,2, ,

ˆ ˆ ˆ ˆˆ ˆ
a kb c b b c b

y k y e k k n
a a a aa a

  
         
 

  (5) 

Then the forecast results               0 0 0 0ˆ ˆ ˆ ˆ1 , 2 , ,Y y y y n   

of the NGM is: 
           0 1 1ˆ ˆ ˆ 1 , 2,3, ,y k y k y k k n      (6) 

2.1 Fractional-order accumulation method 

Change the accumulation method of the original 

sequence               0 0 0 01 , 2 , ,Y y y y n  , its fractional-

order accumulation is               1 , 2 , ,r r r rY y y y n  , 

r  is the fractional-order, which: 
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when 1r  , the fractional-order accumulation 
degenerates to the one-order accumulation. 

For the fractional-order accumulation operations, it 
can express: 

       
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  (8) 

This paper used the fractional-order accumulation 
method to improve the prediction accuracy of the NGM. 

2.2 Forecasting method 

his paper uses a new time series forecasting method to 
improve the accuracy of the prediction, for a set of time 

series               0 0 0 01 , 2 , ,Y y y y n  , set the 

number of windows to  , divide  0Y  into group n   

data       0 0 0
1 2, , , nY Y Y  , which: 
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   

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 (9) 

Modelling each set of data separately and predicting 
one-step backward, we use this n   one-step forecast 

result as the one-step rolling forecast result of this time 

series             0 0 0ˆ ˆ ˆ1 , 2 , ,one step one step one stepy y y n      . The one-

step rolling forecast mechanism can be represented in 
Fig 1. 

3 Parameter optimization based on grid 
search 

After optimizing the NGM by using the fractional 
accumulation operation, how to determine the value of 
the fractional parameters r  becomes the key to 
optimization. Searching in the parameter grid at 
intermediate intervals can ensure that the obtained 
parameters are valid. When the parameter grid is divided 
into small enough, the optimal approximate parameters 
in the grid can be obtained, and then the searched 
parameters are used for modeling prediction. 

To adjust the parameters during the modeling process, 
the data set needs to be divided into a training set and a 

validation set. Taking               0 0 0 0
1 1 , 2 , ,Y y y y    as an 

example,  0
1Y  data set is divided into two parts: training 

set and validation set, marked as 
              0 0 0 0

1 , 1 , 2 , ,t r a inY y y y v   and 

              0 0 0 0
1, 1 , 2 , ,validY y v y v y     .  0

1,trainY  is 

used to initialize the prediction model,  0
1,validY  is used to 

verify whether the searched parameter is the optimal 
approximate parameter in the parameter grid, that is, 

              0 0 0 0
1,
ˆ ˆ ˆ ˆ1 , 2 , ,validY y v y v y      predicted by 

parameter r  is used to verify whether the optimal search 
condition is satisfied with this equation: 

       
20 0

1

ˆmin
v

i

y v i y v i







       (10) 

The search algorithm in this section is summarized as 
Algorithm 1. 
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Figure 1 The one-step rolling forecast mechanism 

Algorithm 1 

1   Input: the original data sequence  0Y , forecasting model mdl , parameters r  to be optimized, parametric 

grid interval S , the number of windows   

2   Divide  0Y  into n   parts:       0 0 0
1 2, , , nY Y Y   

3   for 1; 1; 1i i n i i       do: 

4      For  0
iY , divide  0

iY  into two parts: training set  0
,i trainY  and validation set  0

,i validY  

5      for j  in S  do: 

6         ir j  

7         Substitute the parameter values ir  at this time into the model mdl  for modelling 

8         Use the model mdl  to forecast the validation set to get the forecast value  0
,î validY  

9         Calculate   of the forecast result  0
,î validY  and validation set  0

,i validY  

10    end 

11    Take the value of ir  when ̂  is minimum as the optimal parameter 

12  end 

13  Get the fitted model group:  1 2, , , nmdl mdl mdl   

14  Use  1 2, , , nmdl mdl mdl   to predict backwards by one-step to form the forecast result 

            0 0 0ˆ ˆ ˆ1 , 2 , ,one step one step one stepy y y n       

15  return the one-step forecast result             0 0 0ˆ ˆ ˆ1 , 2 , ,one step one step one stepy y y n       

 

4 Case study 

In this section, we use monthly natural gas production 
(dry) of U.S. (from Jan-2017 to Aug-2020) to verify the 
above prediction method. In this case, to highlight the 
performance advantages of FNGM, we compare and 
analyze GM, DGM and their fractional accumulation 
form models FGM, FDGM with FNGM. In the first part 
of this section, four evaluation indicators are used to 
quantify the predictive performance of each model. The 

forecast results are analyzed in the last part of this 
section. 

4.1 Model evaluation metrics 

We use evaluation metrics to quantify the predictive 
performance of the model. For a data set 

              0 0 0 01 , 2 , ,Y y y y n  , the predicted set 

marked as               0 0 0 0ˆ ˆ ˆ ˆ1 , 2 , ,Y y y y n   is 

obtained by the model prediction, which is used to 
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reflect the predictive ability of the model compared to 
 0Y . The definitions of two evaluation metrics used in 

this paper are introduced in Table 1[12]. 

Table 1 The definitions of evaluation metrics 

Metrics Expression 

Mean absolute 

percentage 

error(MAPE) 

       
   

0 0

0
1

ˆ1
100%

n

i

y i y i
MAPE

n y i


 

 

Root mean squared 

percentage 

error(RMSPE) 

       
   

20 0

0
1

ˆ1
100%

n

i

y i y i
RMSPE

n y i

 
   

 


 

4.2 Forecast result analysis 

The monthly natural gas production (dry) of U.S. is used 
to make predictions, which has 44 times nodes and 12 
designated windows marked as 12  . The predicted 

value of a total of 32 times nodes (Jan-2018 to Aug-2020) 
are obtained by the one-step rolling prediction method, 
and the prediction results and evaluation metrics values 
of each model are shown in Table 2. Comparing the 
values of the evaluation metrics, the MAPE and RMSPE 
calculated using the prediction results of FNGM are 
0.52% and 0.56%, respectively. Therefore, the FNGM 
has better predictive performance. 

To analyze the prediction performance of each model 
more intuitively, we made a comparison chart of the 
prediction results of the models in Figure 2, which shows 
that FGM and FNGM have relatively better prediction 
performance among the six prediction models. Further 
analyzing the error analysis chart on the right, the FGM 
error value is within the interval  100,100 , and most of 

the error values exceed 50, while the error interval of 
FNGM is  30,30 , which is much smaller than that of 

FGM, and the error interval of the other four prediction 
models is wider. Therefore, the prediction performance 
of FNGM is superior. 

Table 2 The forecast results and evaluation metrics of the GM, NGM, DGM, FGM, FNGM and FDGM 

Date Raw 

Data 

GM NGM DGM FGM FNGM FDGM 

Jan-18 2441.06  2478.36  2318.13  2477.93  2457.98  2457.85  2464.96  

Feb-18 2250.91  2468.57  2340.64  2468.40  2192.39  2246.20  2250.68  

Mar-18 2521.15  2425.54  2352.92  2425.00  2588.89  2536.58  2570.24  

Apr-18 2435.68  2470.14  2372.19  2469.54  2439.22  2444.98  2440.48  

May-18 2545.81  2481.39  2389.52  2480.79  2600.19  2560.73  2596.45  

Jun-18 2476.15  2513.00  2408.94  2512.41  2480.13  2486.27  2478.96  

Jul-18 2609.65  2522.92  2426.76  2522.32  2664.30  2622.92  2721.73  

Aug-18 2662.29  2574.45  2450.88  2573.79  2729.91  2674.59  2702.28  

Sep-18 2618.67  2620.95  2478.68  2620.26  2645.48  2637.69  2641.37  

Oct-18 2740.27  2656.94  2508.90  2656.30  2804.33  2756.51  2810.76  

Nov-18 2698.18  2726.10  2547.50  2725.45  2725.08  2723.95  2715.73  

Dec-18 2774.45  2773.43  2587.14  2772.92  2819.56  2798.03  2838.12  

Jan-19 2772.56  2832.06  2629.33  2831.67  2794.94  2792.86  2791.17  

Feb-19 2519.76  2825.44  2658.97  2825.26  2443.36  2507.08  2549.97  

Mar-19 2808.73  2757.97  2671.74  2757.09  2860.43  2819.50  2849.17  

Apr-19 2729.03  2782.21  2689.39  2781.39  2734.54  2733.39  2729.08  

May-19 2842.30  2781.59  2703.60  2780.76  2893.10  2851.94  2886.21  

Jun-19 2761.43  2797.11  2717.30  2796.41  2764.31  2769.58  2762.34  

Jul-19 2868.63  2793.60  2728.33  2792.90  2913.39  2881.02  2909.49  

Aug-19 2938.97  2834.40  2744.86  2833.67  2997.96  2950.35  3054.44  

Sep-19 2840.56  2879.83  2765.84  2879.04  2849.83  2857.51  2848.80  

Oct-19 2976.72  2898.88  2787.68  2898.13  3037.24  2995.57  3027.01  
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Nov-19 2901.94  2953.92  2815.70  2953.15  2912.26  2918.85  2899.69  

Dec-19 3006.93  2982.25  2844.03  2981.58  3049.23  3025.04  3158.43  

Jan-20 2949.60  3042.59  2877.85  3042.06  2956.97  2963.59  2951.99  

Feb-20 2748.37  3007.81  2896.31  3007.56  2680.81  2735.41  2728.72  

Mar-20 2932.99  2943.53  2903.30  2942.84  2939.87  2930.24  2943.68  

Apr-20 2790.01  2933.72  2909.08  2933.12  2752.23  2777.54  2717.51  

May-20 2723.38  2887.41  2908.50  2886.68  2673.88  2704.04  2664.42  

Jun-20 2652.06  2802.44  2896.74  2801.80  2596.90  2627.72  2597.32  

Jul-20 2787.35  2719.86  2879.21  2719.20  2798.82  2773.48  3139.58  

Aug-20 2800.76  2710.83  2861.82  2710.15  2811.02  2790.08  2806.74  

        

MAPE  3.15% 4.85% 3.15% 1.36% 0.52% 1.74% 

RMSPE  4.19% 5.27% 4.18% 1.63% 0.56% 2.91% 

 

  
Figure 2 The forecast results of each models and their error comparison 

 
We can clearly see the comparison of the predictive 

capabilities of the six models through Figure 3 formed 
from the calculated evaluation metrics value. The 
FNGM takes advantage of the forecast of natural gas 
production of U.S., indicating that the one-step rolling 
forecast method and the method of evaluating fractional 
parameters by grid search are very reliable for improving 
the prediction accuracy of the grey model. 

4.19%

5.27%

4.18%1.63%

0.56%

2.91%

GM

NGM

DGM

FGM

FNGM

FDGM

RMSPE

3.15%
4.85%

3.15%1.36%

0.52%

1.74%

GM

NGM

DGM

FGM

FNGM

FDGM

MAPE  
Figure 3 The MAPE and RMSPE comparison of the GM, 

NGM, DGM, FGM, FNGM and FDGM 

5 Conclusion 

This paper uses the mechanism of one-step rolling 
prediction to model and predict the grey model. Then we 
use grid search to evaluate the parameter values to obtain 
the optimal approximate parameters for fractional 
accumulation models with parameters in the model. In 
the first part, the theory of NGM, the concept of 
fractional accumulation operator and the one-step rolling 
prediction mechanism are briefly described. The 
following paper describes how to set the optimal search 
conditions to obtain the optimal approximation of the 
parameters. Finally, it was applied to the prediction of 
natural gas production (dry) in the United States. Under 
the same prediction mechanism, the FNGM with 
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fractional-order parameters showed superior prediction 
performance than the other five models. The prediction 
results show that the method proposed in this paper can 
be used as an effective tool for energy prediction. 
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