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Abstract. Targeting the problem of gearbox fault diagnosis, we proposed a novel semi-supervised approach 
based on collective anomaly detection. Based on the limited sample data, the principle of the approach is to 
detect whether a test dataset contains abnormal patterns by using data distribution as the metric. The sequence 
obeying unexpected distribution will be identified as collective anomaly, which may be generated by fault 
patterns. The approach consists of three steps. First, the mixture of multivariate Gaussian distribution is used 
to fit the structure of sample dataset and test dataset. Then, based on maximum likelihood estimate algorithm, 
we hope to search the optimal parameters which can fit the data distribution with the highest degree. Finally, 
the fixed point iteration algorithm is used to solve likelihood estimate functions. Experimental results 
demonstrate that the proposed approach can be used to find fault patterns of gearbox without the prior 
knowledge of their generated mechanisms.  

1 Introduction 

With the development of artificial intelligence technology, 
the research direction of fault diagnosis has changed to 
build an intelligent diagnosis system based on data driven 
and intelligent computing technologies. Most researches 
on gearbox fault diagnosis are based on the analysis of 
vibration signals. The data characteristics of vibration 
signal can be divided into two categories [1]: time domain 
and frequency domain, and the features in each of which 
are complex, changeable, and interactive. And they can be 
easily influenced by other vibration sources during the 
driving operation of the vehicle [2].  

Currently, most research on fault diagnosis focus on 
semi-supervised anomaly detection approach [3], which 
detects unknown fault patterns according to a limited size 
of sample data. One of the common limitations of these 
existing approach is that they can hardly detect anomalies 
which are generated in the same background as normal 
data [4]. That is, how to accurately and sensitively detect 
the real time failures during the continuous operation of 
the gearbox. Although the data that makes up these real-
time faults seems normal on their own, it is not normal for 
them to appear together as a set. If the detection only 
checks the single data of unmarked test dataset one by one, 
it is difficult to find such abnormal patterns. On the 
contrary, it may mistakenly identify some normal data 
falling in the low probability density range as abnormal. 

To solve the problems mentioned above, we propose a 
semi-supervised collective anomaly detection approach 
based on data distribution similarity metric and apply it in 
the fault diagnosis of vehicle gearbox. This algorithm 
consists of three parts: 1) mixture of multivariate Gaussian 

distributions is used to fit the distributions of sample 
dataset and test dataset. 2) Based on MLE (maximum 
likelihood estimate) algorithm, search the optimal 
parameters which can fit the data distribution. 3) The fixed 
point iteration algorithm is used to solve likelihood 
estimate functions. When the distribution of a data pattern 
is significantly different from the sample data, it can be 
identified as a collective anomaly that may be generated 
by gearbox fault. 

This paper is organized as follows. In section 2, we 
introduce the construction of the semi-supervised 
detection model in detail, and give the definition of the 
mathematical theory involved in it. Then, based on 
multivariate distribution fitting, maximum likelihood 
estimation and fixed point iteration, the solution process 
of the model is shown in detail in section 3. In section 4, 
we verify our detection approach by testing on actual 
operation data of gearbox in an automobile factory. Lastly, 
we summarize the research results in section 5. 

2 Detection framework and related 
concept 

2.1 Detection Framework 

The framework of the proposed detection approach are 
conducted in two processes. Firstly, for a labeled normal 
sample dataset Ss, its data distribution can be denoted as 
Eq.1. The parameter fs represents the data distribution 
function, 𝜃௦ represents parameters of the function. 

𝐷ሺ𝑆௦ሻ ൌ 𝑓௦ሺ𝑥|𝜃௦ሻ             (1) 

Secondly, for an unlabeled test dataset St which may 
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including abnormal pattern Sa, the mixed multivariate 
Gaussian distribution function is used to fit the data 
structure as Eq.2. The parameter 𝜑 represents the portion 
of anomaly pattern, F represents the mixture distribution 
of the test dataset. 

𝐷ሺ𝑆௧ሻ ൌ 𝐹ሺ𝑥|𝜃௧ሻ ൌ 𝐹ሾሺ1 െ 𝜑ሻ𝑓௦ሺ𝑥; 𝜃௦ሻ; 𝜑𝑓௔ሺ𝑥; 𝜃௔ሻሿ         
(2) 

Based on our proposed collective anomaly detection 
approach, we hope to examine whether an unlabeled test 
contains fault patterns by similarity measures based on 
data distribution. For the realization of the goal, there are 

three parameters as 𝜃௦, 𝜃௔, and 𝜑 need to be estimated. 

2.2 Collective Anomaly 

The collective anomaly is a set of related data instances. 
When they appear together in a certain pattern, their 
overall behavior attribute will deviate significantly from 
the whole dataset, but the individual observation in the set 
may not be an anomaly. 

 

Figure 1. Collective anomaly O1 in a Volcano supervision dataset 

In Figure1, it shows a dataset of collecting the response 
of submarine active volcano movement to seasonal ocean 
currents which reflected by the metric of specific heat 
capacity (C, J/kg•°C). The yellow dotted line is the all-
time high line, and the blue dotted line is the all-time low 
line. The yellow and blue solid line represent the highest 
and lowest averages in the past decade respectively, and 
the purple solid line represents the current situation. The 
data that constitute the subsequence O1 denotes a 
collective anomaly, since the variation trend of the 
subsequence is obviously different from the historical 
curve during the time interval, even if each observation 
itself fluctuates within the normal range. 

2.3 Fixed Point Iteration Algorithm 

Fixed-point iteration is a successive approximation 
method with which represent the implicit equation by a set 
of explicit equations. In other word, the approximate value 
of the root is repeatedly corrected using an equation to 
make it convergence [5]. As an effective method for 
solving highly nonlinear numerical problems [6], due to 
its excellent mathematical properties and mature theorem 
proofs, fixed point iteration has been widely used for 
searching equation solution in many fields of engineering 
mathematics. Main concepts of the algorithm are shown 
as follows: 

Definition 1. Suppose that X is a subset of Rn. If there 
is a specific f(x)∈X corresponding to every point x in 
subset X, f is a self-mapping of X, denoted as f: X→X. 

Definition 2. Suppose that X is a nonempty set and f: 
X→X is its self-mapping. If there is a x*∈X satisfy f(x*) 
=x*, x* is considered to be a precise fixed point of f. 

Definition 3. Suppose that (X, ρ) is a metric space and 
T: X→X is a mapping. If there is an L∈ [0, 1) that enables 
ρ(T(x), T(y))≤Lρ(x, y) for any x, y∈X, T is considered to be 

the contraction mapping on X. 
Theorem 1. The Banach fixed-point theorem is also 

known as the contraction mapping theorem. Suppose that 
(X, ρ) is a nonempty perfect metric space and T: X→X is a 
contraction mapping, T has the only fixed point in X. The 
Banach fixed-point theorem determines the existence and 
uniqueness of the solution to equation T(x) =x. 

Theorem 2. For any contraction mapping T: X→X, 
suppose that X is a bounded discrete nonempty set, which 
means there is a≤x≤b for any x∈X. If the following two 
conditions are satisfied: (1) there is a≤T(x)≤b for any x∈X 
and (2) there is a positive constant L<1 that enables 
|𝑇ሺ𝑥ሻ െ 𝑇ሺ𝑦ሻ| ≪ 𝐿|𝑥 െ 𝑦| for any x, y∈X, T has the only 
fixed point x* within the bounded discrete nonempty set. 

Definition 4. Approximate fixed point: suppose that ε 
is any positive constant and |𝑥 െ 𝑓ሺ𝑥ሻ|is the modulus of 
the vector 𝑥 െ 𝑓ሺ𝑥ሻ  in n-dimensional Euclidean space 
Rn for the contraction mapping T: X→X. If there is a point 
x* satisfying|𝑥∗ െ 𝑓ሺ𝑥∗ሻ| ൏ 𝜀, x* is an approximate fixed 
point. 

The existence of a precise fixed point can be proven in 
many conditions, but the computation overhead is always 
too expensive to find it, besides, for the convenience of 
calculation, the precise value of fixed point is usually need 
to be approximated. Just like, the precise solution to 
x2−2=0 is infinite which must be approximated to 
participate in the later calculation. Therefore, we 
introduced the concept of approximate fixed-point into our 
algorithm to solve this kind of problem. If the limited 
numerical value of precise fixed point was not found when 
the search reached the preset number of iterations, the 
approximate fixed point with the highest precision during 
the iteration will be taken as the result. 
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3 Algorithm construction 

Our proposed detection approach consists of three part. 
Firstly, finite mixtures of multivariate Gaussian 
distributions are used to represent the distribution of 
labeled normal sample dataset (as shown in Eq.1) and 
unlabeled test dataset (as shown in Eq.2). Then, the MLE 
(maximum likelihood estimate) algorithm to estimate the 
parameters of the mixture distribution functions. Finally, 
fixed point iteration algorithm is carried out to solve the 
maximum likelihood estimate functions. 

3.1 Mixture of Multivariate Gaussian 
Distributions 

The multivariate mixture of Gaussian is adopted to 
represent the data distribution. In an n-dimensional 
Euclidean space Rn, the mixture multivariate Gaussian 
distributions of K components is defined as Eq.3 and Eq.4. 
𝑁ሺ𝑥|𝜇௞; ∑௞ሻ  represents the probability density function 
for the k Gaussian distribution with mean  𝜇௞ . The 
parameter ∑ is covariance matrix, which is symmetric and 
positive semi-definite, and the |∑௞|  denotes matrix 
determinant. The  𝜆௞  is the mixing coefficient for the k 
Gaussian distribution, which satisfy  𝜆௞ ൒ 0 
and ∑ 𝜆௞ ൌ 1௄

௞ୀଵ . 

𝑁ሺ𝑥|𝜇௞; ∑௞ሻ ൌ
ଵ

ሺଶగሻ
೙

మൗ |∑ೖ|భ
మൗ

𝑒𝑥𝑝 ൬െ
ଵ

ଶ
ሺ𝑥 െ 𝜇௞ሻ்∑௞

ିଵሺ𝑥 െ 𝜇௞ሻ൰        

(3) 
𝐷ሺ𝑆ሻ ൌ 𝑓ሺ𝑥|𝜃ሻ ൌ ∑ 𝜆௞𝑁ሺ𝑥|𝜇௞; ∑௞ሻ௄

௞ୀଵ     (4) 
For the labeled normal sample dataset, the data 

distribution function is defined as Eq.5. The parameter 
needs to be estimated is 𝜃௦ ൌ ൫𝜆௝; 𝜇௝; ∑௝൯. 

𝐷ሺ𝑆௦ሻ ൌ 𝑓௦ሺ𝑥|𝜃௦ሻ ൌ ∑ 𝜆௝𝑁൫𝑥ห𝜇௝; ∑௝൯௃
௝ୀଵ     (5) 

For the unlabeled test dataset, the data distribution 
function is defined as Eq.6. The parameter needs to be 
estimated is 𝜃௧ ൌ ൫𝜃௦; 𝜑; 𝜇௤; ∑௤൯ 

𝐷ሺ𝑆௧ሻ ൌ 𝐹ሺ𝑥|𝜃௧ሻ ൌ ሺ1 െ 𝜑ሻ𝑓௦ሺ𝑥; 𝜃௦ሻ ൅ 𝜑 ∑ 𝜆௤𝑁൫𝑥ห𝜇௤; ∑௤൯௃ାொ
௤ୀ௝ାଵ         

(6) 

3.2 Maximum Likelihood Estimate (MLE) 
algorithm 

Maximum likelihood estimation algorithm is used in the 
case where the data distribution function is known but the 
function parameters are known. For a continuous 
sequence S, its probability density function is 𝑓ሺ𝑥|𝜃ሻ. If 
S1=(X1, X2… Xn) is a sample of S, and the probability 
density function 𝑝ሺ𝑋|𝜃ሻ ൌ ∏ 𝑓ሺ𝑥௜; 𝜃ሻ௡

௜ୀଵ   is known. If 
the point  𝑌 ൌ ሺ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡ሻ ∈ 𝑆ଵ , the probability that 
any random point in S falls on the adjacent side of Y can 
be approximately expressed as  𝑝 ൌ ∏ 𝑓ሺ𝑥௜; 𝜃ሻ௡

௜ୀଵ 𝑑𝑥௜ . 
The likelihood function of sequence S can be calculated as 
Eq.7. 

𝐿ሺ𝜃ሻ ൌ 𝐿ሺ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡; 𝜃ሻ ൌ ∏ 𝑓ሺ𝑥௜; 𝜃ሻ௡
௜ୀଵ    (7) 

The method of MLE algorithm is to find the parameter 
𝜃෠ which can make the probability 𝑝 ൌ ∏ 𝑓ሺ𝑥௜; 𝜃ሻ௡

௜ୀଵ 𝑑𝑥௜ 

reach maximum value, it can be defined as Eq.8. 
𝐿൫𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡; 𝜃෠൯ ൌ 𝑚𝑎𝑥𝐿ሺ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡; 𝜃ሻ  (8) 

where 𝜃෠ is associated with the selected point Y, the 
𝜃෠ሺ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡ሻ  represents the maximum likelihood 
estimation of the parameter θ of the probability density 
function 𝑓ሺ𝑥|𝜃ሻ. 

Due to the function 𝑙𝑛𝐿ሺ𝜃ሻ is the increasing function 
of 𝐿ሺ𝜃ሻ, both of them will reach their maximum value at 
the same point. Hence, it is usually to search the extreme 
point of 𝑙𝑛𝐿ሺ𝜃ሻ  to replace  𝐿ሺ𝜃ሻ , which can not only 
convert the multiplication to addition but also avoid the 
problem of floating point overflow. Thus, based on the 
Eq.4 and Eq.6, the likelihood function of labeled normal 
sample dataset can be calculated as Eq.9, and the 
likelihood function of unlabeled test dataset can be 
calculated as Eq.10. 

𝑙𝑛𝐿൫𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡; 𝜃෠௦൯ ൌ 𝑚𝑎𝑥𝑙𝑛𝑓௦ሺ𝑥|𝜃௦ሻ     (9) 
𝑙𝑛𝐿൫𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡; 𝜃෠௧൯ ൌ 𝑚𝑎𝑥𝑙𝑛𝑓௧ሺ𝑥|𝜃௧ሻ     (10) 

3.3 Fixed point iteration algorithm 

For Eq.9 and Eq.10, the extreme value will appear at the 
inflection point of the function, it means if a point 𝑌௜ ൌ
ሺ𝑦௜ଵ, 𝑦௜ଶ, ⋯ , 𝑦௜௡ሻ ∈ 𝑆  satisfy the equation  𝑙𝑛𝐿ሺ𝜃ሻᇱ ൌ 0 , 
the  𝜃෠ሺ𝑦௜ଵ, 𝑦௜ଶ, ⋯ , 𝑦௜௡ሻ  will represents the maximum 
likelihood estimation of the parameter θ. Based on the 
definition of fixed point iteration in former section, it can 
be used to search the maximum likelihood estimation of 
the parameter θ of the probability density function 𝑓ሺ𝑥|𝜃ሻ, 
the detailed steps are as follows. 

(1) Construct the fixed-point iteration. The problem of 
searching function extreme value can be converted to seek 
the point that satisfying derivative 𝑙𝑛𝐿ሺ𝜃ሻᇱ ൌ 0.  

(2) Transform the functional form of 𝑙𝑛𝐿ሺ𝜃ሻᇱ ൌ 0 
into 𝜃 ൌ 𝑓ሺ𝜃ሻ. 

(3) Select an initial approximate solution 
𝜃଴ሺ𝑦଴ଵ, 𝑦଴ଶ, ⋯ , 𝑦଴௡ሻ  and substitute it into the right side 
of 𝜃 ൌ 𝑓ሺ𝜃ሻ, yielding 𝜃ଵ ൌ 𝑓ሺ𝜃଴ሻ. This step was repeated 
according to the equations 𝜃௞ ൌ 𝑓ሺ𝜃௞ିଵሻ, k is the size of 
the sequence. 

(4) Before the process in step 3 reaching the max 
number of iterations, if there is a 
solution  𝜽෡ሺ𝒚𝒊𝟏, 𝒚𝒊𝟐, ⋯ , 𝒚𝒊𝒏ሻ  satisfying 𝜽෡ ൌ 𝒇൫𝜽෡൯ , it will 
be treated as the precise fixed point. According to the 
Definition 4, if the precise fixed point cannot be found, the 
point that satisfied ห 𝜽෡ െ 𝒇ሺ 𝜽෡ሻห ൏ 𝜺 at the greatest extent 
will be taken as the approximate fixed point. 

4 Experiment and analysis 

The WLY·CVT25 stepless gearbox newly developed by 
an automobile manufacturer is selected as the 
experimental object, detailed product information is 
shown in Figure 2 (a). The experimental data is derived 
from the vibration signal collected by sensors under 
different working conditions of the gearbox, and the 
acquisition frequency is once every 5 seconds. 
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Product features
Rated torque: 250Nm

Dry weight: 84.5Kg

Axial length: 365mm

Center distance 

(1-4 bearing): 197mm

Velocity ratio: 7.07          

Driving shaft

Driven 
shaft

Driving 
gear

Driven 
gear

 

Figure 2(a). The detail information of WLY·CVT25    Figure 2(b). The test component of WLY·CVT25 

4.1 Experimental dataset 

The experimental dataset used in this section consists of 
three parts: normal sample dataset Ss, abnormal dataset Sa, 
and unknown test dataset St.  

Normal sample dataset Ss: To avoid the data fluctuation 
caused by too long continuous working of one gearbox, 
three qualified gearboxes of the same model are selected 
to work continuously for 24 hours under the same load 
condition. The vibration datasets generated by the three 
gearboxes will be set as the normal dataset Snormal. The data 
collected within 10 independent hours are randomly 
selected from the normal dataset Snormal to form the normal 
sample dataset Ss. 

Abnormal dataset Sa: As shown in Figure 2 (b), the 

driving shaft, driven shaft, driving gear, and driven gear 
are four most important components of the gearbox. Thus, 
we select them as the target of fault diagnosis. In the 
experiment, these four qualified parts will be replaced 
with cracked parts one by one. For each cracked part, 
under the same load condition, we collect 6 hours of 
vibration data as the abnormal dataset Sa. 

In addition, compared with the cracked parts, the 
difference between the vibration signal generated by the 
worn old parts and the normal signal is not so obvious. In 
order to test the sensitivity of our algorithm, we also use 
the worn old parts to replace the qualified parts one by one, 
and collect the vibration data for 6 hours under the same 
load condition. To clearly represent these abnormal 
datasets, we label them according to Table 1 to avoid 
unnecessary troubles. 

Table 1. Symbolic representation of all kinds of abnormal datasets 

 Power take off shaft Driven shaft Driving gear Driven gear 

Crack Sa1(C) Sa2(C) Sa3(C) Sa4(C) 
Abrasion Sa1(A) Sa2(A) Sa3(A) Sa4(A) 

Unknown test dataset St: In the normal dataset, 
different kinds of abnormal dataset Sa are added one by 
one to form eight kinds of unknown test datasets St. Based 
on the previous assumption that the fault pattern only 
accounts for a small proportion of the entire dataset, the 

proportion of abnormal dataset is controlled below 5% of 
the normal dataset. The data of no more than 3 hours size 
are randomly select from all kinds of abnormal datasets to 
add to the normal dataset. Details are shown in Table 2. 

Table 2. The results of fault diagnosis of all test datasets 

 Sample dataset Ss Normal dataset Snormal Anomaly dataset Sa 

St1= Snormal+ Sa1(C) 10h 72h 2.6h 

St2= Snormal+ Sa2(C) 10h 72h 2.1h 
St3= Snormal+ Sa3(C) 10h 72h 0.7h 
St4= Snormal+ Sa4(C) 10h 72h 1.5h 
St5= Snormal+ Sa1(A) 10h 72h 1.9h 
St1= Snormal+ Sa2(A) 10h 72h 1.3h 
St6= Snormal+ Sa3(A) 10h 72h 2.6h 
St7= Snormal+ Sa4(A) 10h 72h 0.5h 

4.2 Experimental results 

For the sample dataset Ss and abnormal datasets Sa, data 
distributions are fitted based on our proposed algorithm. 
The parameters of the distribution function of the sample 
dataset will continue to participate in the subsequent 
analysis. However, the proportion and distribution 
function parameters of various abnormal datasets will be 
used as the real labels to compare with the detection results, 

rather than directly participate in the analysis on unknown 
test datasets St. 

The parameters of the probability density function of 
sample dataset is 𝜽𝒔 ൌ ሺ𝝁 ൌ 𝟎. 𝟎𝟏𝟐𝟔; 𝝈 ൌ 𝟑𝟔. 𝟒𝟑𝟐ሻ . 
The detection results St1~St8 are shown in Table 3, the 
proportion of collective anomaly detected by our proposed 
algorithm and the parameters of its probability density 
function are compared with its real labels. All the results 
were calculated to three decimal places. 
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Table 3. The results of fault diagnosis of all test datasets 

  St1 St2 St3 St4 St5 St6 St7 St8 

Detection 
result 

Mean(μ) 0.1342 0.1027 0.0816 0.0685 0.0451 0.0268 0.0232 0.0198 

SD(σ) 233.839 174.385 101.519 86.392 82.391 58.746 66.288 43.727 

Proportion(λ) 3.168% 2.607% 1.024% 1.867% 2.435% 1.668% 3.271% 0.746% 

Real label 
Mean(μ) 0.1475 0.1099 0.0842 0.0742 0.0485 0.0295 0.0257 0.0206 

SD(σ) 256.966 183.950 106.080 93.201 88.492 60.742 71.847 43.397 

Proportion(λ) 3.485% 2.834% 0.963% 2.041% 2.571% 1.774% 3.485% 0.690% 

From the experimental results in Table 3, it can be 
found that our proposed algorithm has reached more than 
90% agreement in all detection indexes when detecting the 
fault pattern of each unknown test dataset, especially when 
identifying worn and old parts, it still shows high 
sensitivity, which can prove the effectiveness of our 
algorithm. In addition, based on the detection results, we 
can also draw the following conclusions: 1) the obvious 
degree of bearing fault is greater than that of gear. 2) The 
obvious degree of driving component fault is greater than 
that of driven component. 3) The obvious degree of crack 
component fault is greater than that of worn old 
component. 

5 Conclusions 

In this paper, we have presented a semi-supervised vehicle 
gearbox fault diagnosis approach based on collective 
anomaly detection. In the proposed algorithm, firstly the 
mixed Gaussian distribution was used to fit the vibration 
signal of the gearbox. Then, the parameter variation of the 
probability density function of the data distribution was 
taken as the measurement standard. Finally, based on the 
known normal sample dataset, the maximum likelihood 
method and fixed point iteration method were used to fit 
the distribution of the unknown test dataset. According to 
the fitting results of data distribution, data patterns that are 
subject to unknown or unexpected distributions will be 
identified as collective anomalies which may be generated 
by faults. For creditability verification, we have made the 
detection experiment on eight kinds of test datasets in 
which including different kinds of fault patterns. The 
experimental results show that, when detecting each test 
dataset, the proposed algorithm has achieved a fit of more 
than 90% on each parameter of the failure data distribution 
function, it still shows high sensitivity on identifying worn 
old parts. Therefore, it verifies that our proposed detection 
approach can be used to find fault patterns of vehicle 
gearbox without the prior knowledge of their generated 
mechanisms. Given the generality of the framework, it 
should be possible to find future applications also on other 
fields of science and technology. 
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