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Abstract. Structural dynamic modification plays an important role in structural dynamic design. This paper 
presents an algorithm for dynamic modification of the structure, which is based on the Combined 
Approximations (CA) approach, sensitivity analysis, Taylor series expansion and the least square method. 
The feasibility of the algorithm is verified by a numerical example and the results show that the algorithm is 
accurate enough and easy to be implemented. 

1 Introduction 

The structural reanalysis method can accelerate the 
calculation process of structural dynamic modification 
and optimization design, and avoid the complete and 
accurate analysis of the structure repeatedly. This method 
makes use of the initial information obtained in the last 
analysis and solution process, and carries on the fast 
solution calculation, which is an efficient solution method. 
The Combined Approximation (CA) method is a popular 
method of reanalysis in recent years. The lower order 
terms of the binomial series expansion are used to build 
the basis vectors.  

In order to meet the requirements of accuracy and 
efficiency in the structural analysis, the problem of linear 
static reanalysis is effectively solved by the CA method 
which is presented by Kirsch[1]. And this method can be 
well applied to sensitivity analysis, structure layout and 
topology optimization. Chen[2] improved the CA 
algorithm, and put forward a general iterative combination 
approximation (ICA) method so that it can be applied to 
various types of topology modifications. In the case of 
changes of degree of freedom, Wu[3] proposed a method of 
undetermined coefficient. Levy[4] used modified initial 
design to calculate the inverse matrix of the modified 
stiffness matrix. Bae[5-7] calculated the augmented matrix 
with the combination of SWM formula and series 
expansion method, and proposed a method for finding the 
inverse of continuous matrix. In order to improve the 
accuracy of the solution under the condition of large 
structural modification, Chen[8] proposed a matrix 
perturbation method based on Padé approximate method. 
A preconditioned Lanczos algorithm is proposed to 
accelerate convergence of the structural static problems by 
Xu[9, 10]. Zuo[11-13] applied Combined Approximation 
method to analyze the sensitivity of vibration problem. 

CA method is also introduced into modal reanalysis 
and further developed to solve the problem of time-

domain reanalysis. In 2006, Wu[14] and Chen[14] introduced 
the Epsilon method into the modal reanalysis problem. 
Yang[15] introduced Padé approximation and matrix 
perturbation method into modal reanalysis, and proposed 
modal reanalysis method, which increased the variable 
range of structural parameter modification. For nonlinear 
problems, its development is not mature, and there are still 
many problems to be solved, which is the key research 
direction and development trend in the future. 

The background and development of structural 
reanalysis and dynamic modification are briefly 
introduced in Sect.1.The formula of structural dynamic 
modification, which combines sensitivity analysis with 
Taylor expansion is given in Sect.2. In Sect.3, the 
algorithm is verified by a numerical example. Finally, the 
stability and feasibility of the algorithm are discussed in 
Sect.4. 

2 Formulation and Solution 

2.1 Modal reanalysis algorithm 

For a typical vibration system, the modal analysis under 
undamped condition is considered. The eigenvalue 
problem can be expressed: 

0 0 0 0 0

0 0
T

K M

K U U

   


           (1) 

Where 0K and 0M denotes the total stiffness matrix and 

mass matrix of the original structure respectively, 0U is the 

upper triangular matrix obtained in modal analysis. When 
the structure is modified, the eigenvalue problem equation 
can be written as 

K M                 (2) 
Therefore, when the structure changes slightly, the 

modal vector under the new condition can be linearly 
combined by the following formula: 

1 1 2 2 . . . . . . s sy r y r y r Ry           (3) 
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Where R and y are:   
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The above modification realizes the effective 
reduction of the order of large structures. In order to 
transfer it into a typical structure, further processing is 
needed. 

1 1 1
T TR KRy R MRy        (5) 

Use the following notation to rewrite equation (5): 
T

R

T
R

K R KR

M R MR




             (6) 

Then, equation (5) can be expressed as the following 
format: 

1 1 1R Ry M y              (7) 

In order to improve the accuracy of the mode 
calculation, the Schmidt orthogonalization and 
normalization can be used in the subsequent step. 

2.2 Sensitivity analysis and Taylor expansion 

The sensitivity information of the structure is the key to 
predict the changing trend of the structural response with 
the structural design variables. It is assumed that the 
design variable of the structure is ix  and the mass and 

stiffness matrix before modification are 0M  and 0K

respectively, while the stiffness and mass matrix after the 
modification are: 

 0
1

m

i
i

K K K x


                (8) 

 0
1

m

i
i

M M M x


               (9) 

The response relationships between stiffness, mass 
matrix and modification of design variables are like this: 
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Assume that the design variable modification of the 
structure is , ( 1, 2, . . . . . . , )ix i m   , the corresponding 

eigenvalues are  1 2, , . . . . . . ,j mx x x     . In order to 

make the eigenvalue reach the target value after 
modification, it is important to minimize the absolute 
value of the phase difference, which means:

  2

1 2min , , . . . . . . ,j mx x x       . 

The first order Taylor expansion theorem is introduced: 
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Use the least square method to calculate:  
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Now consider the second order Taylor expansion 
theorem: 
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The calculation is performed using the least square 
method: 
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Take any binary function  ,x y , differential variable 

is t  , the differential equation as shown below can be 
obtained: 
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    (16) 

According to the above differential equation, we can 
calculate the sensitivity information with Taylor 
expansion. Approximate function expression between the 
design variables and the responses is founded.  

3 Numerical Example 

In order to illustrate the formula effectively, a car door 
modification example is considered. Choose “PSHELL” 
as Card Image in Hypermesh and the rigid material 
parameters of this car door are: 

97.85
0.3
210000

e

E








 

The working conditions of the door include two types: 
the boundary condition and the load condition. For 
displacement boundary conditions, this example imposes 
complete constraints on the original model hinges and 
door rings. The concentrated load is applied to the lower 
part of the window. (Fig.1). 

 

Fig. 1. Load and restraint 

In order to simplify the calculation, the grid of door 
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model is expanded, and the door model is shown in Fig.2 and Fig.3.  

 

Fig. 2. Finite element model of a car door              Fig. 3. Simplified model 

 

In this example, there are two different design 
variables in the following figure: one is the outer plate of 
the vehicle, the thickness of the outer plate is defined as

1x . The second is the reinforcing beam on the inner side 

of the door, and the thickness of the reinforcing beam is 
defined as 2x . (Fig.4 and Fig.5) 

 

 

Fig. 4. Door outer plate                       Fig. 5. Reinforcement beam 

The differential variable t≤0.01mm is selected and 
meanwhile the design variables are also modified. The 
stiffness displacement and the first third order natural 
frequencies are solved by Hypermesh and Matlab 
respectively with the required first and second order 
sensitivity information is obtained in the difference 
formula. The first order Taylor expansion is used and a 
certain simplification operation is carried out. 

The Taylor expansion of the first natural frequency is： 

   1 1 26.55 0.005 0.7 0.145 1.6x x       

As for the second and third natural frequencies： 

   2 1 215.35 3.13 1.6 7.47 1.6x x     
 

   3 1 223.48 24.02 0.7 0.056 1.6x x       

Now use Taylor expansion on the stiffness 
displacement of the maximum stress point, the result can 
be written as： 

   1 20.978324 2.9343 0.7 0.0022 1.6d x x      

Use the same expansion on the overall quality of the 
model： 

   1 212.8583 5.8875 0.7 0.785 1.6m x x      

The second order Taylor expansion is used and some 
simplification operations are carried out.： 

The first order natural frequency is： 

     
    

2

1 1 2 1
2

2 1 2
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3.66 1.6 0.2 0.7 1.6

x x x
x x x

       
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Also, the second order Taylor expansions of the second 
and third order natural frequency are： 

     
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2
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2
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Second order Taylor expansion of the stiffness 
displacement of the maximum stress point is: 

   
    

1 2
2

1 1 2

0.978324 2.9343 0.7 0.0022 1.6
14 0.7 0.51 0.7 1.6

d x x
x x x

    
    

 

According to the requirement of practical engineering 
application, the constraints imposed in this example are 
expressed as: 

1

2

0.5 1.5
1 2
mm x mm
mm x mm

 
   

Define the first three orders of the natural frequencies 
as objectives： 

1

2

3

=7

=16

=24





 

The result of the optimization using Taylor expansion 
as a response can be made. Comparing the design variable 
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value with the response value obtained by Lanczos 
algorithm and ANSYS. 

 

Table1 Comparison of first order Taylor's modification results 

 
1x mm 2x mm  1 Hz  2 Hz 3 Hz d mm 

Lanczos  0.7259 1.4056 6.6604 15.3904 24.0442 0.9028 
Ansys 0.7259 1.4056 6.7070 13.9370 23.9922 0.9073 
Error   1.9560% 9.4450% 0.2160% 0.4980% 

Table2 Comparison of second order Taylor's modification results 

  
1x mm 2x mm  1 Hz  2 Hz 3 Hz d mm 

Lanczos  0.7185 1.4614 6.5499 15.3393 23.9388 0.9209 
Ansys 0.7185 1.4614 6.7906 13.9260 23.8280 0.9267 
Error   3.675% 9.214% 0.471% 0.63% 

By comparing the first order Taylor with the second 
order Taylor, it can be seen that when the structural 
modification is small, both the first and second order 
Taylor can meet the requirements of dynamic modification. 

Then CA algorithm is used, and the first and second 

order Taylor expansion are performed separately. The 
calculated results are compared to the results obtained by 
the finite element software ABAQUS analysis. The 
specific results are as follows: 

Table3 Comparison of first order Taylor errors in CA method 

 
1x mm 2x mm  1 Hz  2 Hz 3 Hz d mm 

Lanczos  0.7121 1.5051 6.5638 16.0987 23.7797 0.9396 
Abaqus 0.7121 1.5051 6.7906 13.9160 23.6960 0.9423 
Error   3.455% 13.558% 0.352% 0.28% 

Table4 Comparison of second order Taylor errors in CA method 

 
1x mm 2x mm  1 Hz  2 Hz 3 Hz d mm 

Lanczos  0.7033 1.5750 6.5560 16.0486 23.5825 0.9689 
Abaqus 0.7033 1.5750 6.7906 13.9010 23.4830 0.9688 
Error   3.578% 13.382% 0.422% 0.01% 

Compared with the results of first order Taylor and the 
second order Taylor formula, it can be seen that a second 
order Taylor expansion formula can meet the precision in 
the range of the structural change in the small amplitude. 
In this condition, the result obtained by the structural 
reanalysis algorithm is not much different from that of the 
software calculation result but the calculation amount is 
effectively reduced, and the calculation efficiency is 
improved. 

4 Conclusion 

This paper presents a dynamic structural modification 
algorithm. Through the structural sensitivity information, 
the response expression between the modification of 
design variables and the response value is found by using 
CA algorithm and Taylor expansion formula when 
modifying the model dynamically. An example is given to 
verify the accuracy and feasibility of the algorithm, and 
the purpose of the algorithm is to reduce the amount of 
computation and improve the computational efficiency. 
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