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Abstract. Large-scale distributed generation grid-connection brings huge economic and environmental 
benefits, but also threatens the stability of the grid. To make the grid consume a higher proportion of 
distributed generation, it is necessary to optimize the location and capacity of the distributed generation 
connected to the grid. Firstly, the uncertainty analysis model of wind speed, illumination intensity, and load 
of grid is established. Secondly, a distributed generation location and capacity planning model with the lowest 
annual comprehensive cost as the objective function is constructed. Then, a novel fractional particle swarm 
optimization algorithm is proposed, and the performance of the algorithm on complex optimization problems 
is tested. Finally, the simulation results of the IEEE 33-bus system example verify the rationality of the 
established model and the effectiveness of the proposed algorithm. 

1 Introduction  

Due to the limited reserves of fossil fuels and the 
increasingly severe environmental problems brought 
about by them, the realization of low-carbon and 
sustainable development has become the core concept of 
solving energy problems. Compared with traditional 
thermal power generation, distributed generation (DG) 
including wind turbine generator (WTG) and photovoltaic 
generator (PVG) has clean and sustainable characteristics. 
DG connected with the grid can bring huge economic and 
environmental benefits [1]. However, the inherent 
stochastic and fluctuating characteristics of DG's output 
will have an impact on the grid. Large-scale DG grid-
connection will result in a decrease in power quality and 
power supply reliability [2]. The location and capacity of 
DG connected to the distribution grid will affect the grid’s 
network topology and power flow of the grid [3]. 
Therefore, optimizing the location and capacity of DG can 
improve the level of new energy consumption in the 
distribution grid, the stability of the distribution system, 
and economic benefits. 

At present, the research on the siting and sizing 
problem of DG is mainly focused on dealing with the 
uncertainties of wind speed, illumination intensity and 
load of grid. Reference [4] proposed a probabilistic power 
flow calculation method considering the correlation of 
input variables. This algorithm has the advantages of high 
accuracy and fast speed. Reference [5] established an 
optimization model with the minimum annual 
comprehensive cost as the objective function. The Latin 
hypercube sampling method was used to generate the 
initial scene, and the improved synchronous back-
generation reduction method was used to reduce the scene. 

Reference [6] established an intermittent distributed 
generation site selection and capacity planning model 
based on the opportunity-constrained programming 
method, and used a rank correlation coefficient matrix to 
characterize the correlation between random variables. 
Reference [7] included environmental factors into the 
objective function, making the planning results closer to 
the actual project. The above-mentioned documents fully 
considered the uncertainty and correlation of the input 
variables of the system, and constructed the corresponding 
DG site selection and capacity planning model, but did not 
solve the problem of the parameter selection of the model 
solution algorithm, and it is easy to locally converge. 

The mathematical model of DG's location and capacity 
programming is a kind of high-dimensional non-convex 
optimization problem with multiple constraints. 
Traditional convex optimization methods are difficult to 
deal with complex and variable constraints. Therefore, 
intelligent optimization algorithms are widely used to 
solve the above problems. The traditional Particle Swarm 
Optimization (PSO) algorithm is a representative swarm 
optimization algorithm, but it has the shortcomings of easy 
local convergence and low convergence accuracy. Since 
Lévy disturbance has the characteristic of large jump sizes, 
the additive Lévy disturbance can make the particle have 
a wider search range. On this basis, different from the 
multiplicative random disturbance in the traditional PSO, 
the Lévy disturbance is introduced in the form of additive 
random disturbance. The Fractional Particle Swarm 
Optimization (FPSO) algorithm is proposed in this paper. 

This paper comprehensively considers the uncertainty 
and correlation of wind speed, illumination intensity, and 
load, and establishes a DG site selection and capacity 
planning model based on opportunity constraints with the 
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lowest comprehensive annual cost as the objective 
function, and proposes FPSO to solve the model. The 
planning model was simulated on the IEEE 33-bus system. 

2 Planning Model 

2.1 Uncertainty modelling  

2.1.1 Uncertainty of WTG’s output power 

It is generally considered that wind speed is the main 
factor affecting the output power of WTG. The law of 
wind speed generally follows the two-parameter Weibull 
distribution [8], and its probability density function is: 
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where V is the actual wind speed while k  and c  are the 
shape parameter and scale parameter, respectively. 

The wind speed can be converted into the output power 
of WTG through the WTG power model, which can be 
formulated as: 
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where ciV , rV , and coV  denote the cut-in wind speed, the 

rated wind speed, and the cut-out wind speed, respectively. 

,WTG rP is the rated output power of WTG. 

2.1.2 Uncertainty of PVG’s output power 

A lot of studies have shown that the randomness of 
illumination intensity is usually described by Beta 
distribution [9], and its probability density function is: 
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where S  is the illumination intensity, rS  is the rated 

value,   and   are two shape parameters of Beta 
distribution, and ( )   denotes the Gamma function. 

The relationship between actual PVG’s output and 
illumination intensity can be approximated as follows [9]: 

 
,

,

      

           

PV r r
rPV

PV r r

S
P I S

SP

P I S

  
 

 (4) 

where ,PV rP  is the rated power of PVG and rS  is the rated 

illumination intensity. 

2.1.3 Uncertainty of load  

Normal distribution is generally used to describe the 
uncertainty of load size [9] : 
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where ,L iP  and ,L iQ  are the active and reactive power load 

at bus i , and ,P i , ,Q i  and ,P i , ,Q i  are, respectively, 

the mean value and standard deviation of the active and 
reactive power load at bus i . 

2.1.4 Uncertainty treatment method 

Samples conforming to the characteristics of random 
variables of the power system are selected from the 
probability distribution of the uncertain model, and the 
distribution characteristics of output variables can be used 
as a typical scenario of system operation [10]. Quasi-
Monte Carlo Simulation (QMCS) is a sampling method 
that replaces the random number sequence in Monte Carlo 
method by generating low differentiation sequence in high 
dimensional space, which can avoid the spatial 
inhomogeneity of Monte Carlo sampling. At the same time, 
because QMCS generates all the sampling points at one 
time, compared with Monte Carlo, which generates a large 
number of random numbers in each iteration, it also has a 
great improvement in the time efficiency of the algorithm. 

After the sampling points are obtained through QMCS, 
it is necessary to transform the sampling points into a 
sample sequence conforming to the probability 
distribution of the random variables of the system. 
Johnson transform can establish the relationship between 
normal distribution and its own distribution based on the 
target variables' mean value, variance, skewness, kurtosis 
and correlation [11]. First, the sampling points are 
converted to independent normal distribution by the 
inverse operation of the cumulative function equation of 
normal distribution, and then the original sampling data of 
the system random variables are obtained by Johnson 
transform. 

2.2 Deterministic optimization model 

2.2.1 Objective function 

The model takes the minimum annual comprehensive cost 
of DG site selection and capacity as the optimization goal. 
The annual comprehensive costs mainly include DG 
investment costs IC , DG operation and maintenance costs 

OMC , distribution network active power loss costs LC , and 

full consideration of distribution network power purchase 
costs PC and government subsidies SC . Equivalently 

amortize the DG investment cost to each year of the DG 
life cycle through the current value conversion coefficient 
of equivalent years: 

     1 / 1 1
y y
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where d  is the discount rate, and y  is the number of DG 
life period years. 

The objective function is as follows: 
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where n , r , b , and g  are the bus set of DG, type 

set of DG, branch set of grid and generator bus set of grid, 
respectively. ,

j
DG ic  is the number of DG of type j  

installed at bus i , while j
Pc  is the unit price of DG of type 

j  and j
DGP  represents the unit capacity of DG of type j . 

j
OMc  is the unit price of DG’s generated energy, while ec  

is the price of electrovalence. ,Loss lP  is the active power 

loss at branch l  under the maximum load. maxT  is the 

maximum load hours per year. ,GEN mE  is the generated 

energy at bus m . fc  is the government subsidies cost per 

DG unit of electricity generation, while ,
j

DG iE  is the 

generation of type j  DG at bus i . 

2.2.2 Constraints 

The constraints of the model include power flow 
constraint, bus voltage constraint, branch current 
constraint and DG’s capacity constraint. 

1) Power flow constraint 
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where d  is the bus set of grid. iP , iQ , and iU  are 

respectively the active power, reactive power and voltage 
at bus i , while ijG , ijB , and ij  are respectively the 

conductance, susceptance, and phase angle difference 
between bus i  and bus j . 

2) Oppotunity constraint of bus voltage 

            i i i U dP U U U i      (10) 

where  P A  represents the probability that event A  is 

true, while U is the confidence level satisfying the bus 

voltage constraint. iU  and iU  are the upper and lower 

limit of voltage at bus i . 
3) Branch current constraint 

            j j I bP I I j     (11) 

where I  is the confidence level satisfying the branch 

current constraint. jI  is the upper limit of current through 

branch j . 
4) DG’s capacity constraint 
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where DGP  is the upper limit of DG’s capacity in grid, 

while ,
j

DG iP  is the upper limit of type j  DG’s  capacity at 

bus i . 

3 FPSO algorithm 

3.1 PSO algorithm 

Particle swarm optimization algorithm is an intelligent 
optimization algorithm based on swarm search [12], which 
is widely used in large-scale complex optimization 
problems. Its process can be formulated as : 
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where 1,2, ,i N   represents the i th particle in the 
population, while k

iv  and k
ix  are respectively the velocity 

and position of the particle in the k th iteration. 1 2, 0    

are two independent random disturbance. bx  is the best 

position in the solution space that the particle groups have 

been to, while p
ix  is the best of particle i .  1

k
i bx x   

represents the global search ability of particle i , while 

 2
k p
i ix x   represents the local search ability. The 

working mechanism of both is similar to providing 
gradient descent information toward a given target. 

Many swarm-based search algorithms are inspired by 
PSO, such as Cuckoo algorithm, Bat algorithm and 
Differential Evolution algorithm. The global search 
strategy of these algorithms can be formulated as: 

  1k k k
i i k i bx x x x     (14) 

where k  is the randomness in the k th iteration. We have 

to mention that (13) is an accelerated form of (14). 

3.2 Lévy disturbance 

In the PSO algorithm, the searching ability of particles 
comes from stochastic perturbation and historical 
information, and the perturbation can accelerate the 
convergence speed of the algorithm. The form of 
randomness is arbitrary. The common form of 
perturbation distribution in the algorithm includes uniform 
distribution and normal distribution. When the objective 
function has saddle points and multiple minimum points, 
the traditional PSO algorithm is easy to fall into the local 
optimum because of the limitation of the perturbation form. 

Consider a symmetric form of Lévy stable distribution 
 L x , and its characteristic function is: 

    expikXE e k
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where 0   is the scale parameter of  L x  and 0 2   

is the order. When 2   ,  L x  reduce to a normal 

distribution. 

 
Figure 1. Comparison of Lévy flight and Brownian motion 

 
Lévy flight is a form of large size jump caused by Lévy 

disturbance. Compared with the Brownian motion where 
the disturbance increment follows the normal distribution, 
Lévy flight has a larger search space. This process is 
illustrated visually as follows: in a two-dimensional plane, 
two particles with initial positions   are generated. The step 
size of one particle is generated from the standard normal 
distribution, which represents Brownian motion. And the 
step size of the other particle is generated from the 
symmetric standard Lévy distribution with order and scale, 
representing Lévy flight. The direction of motion of the 
two particles is generated from the uniform distribution 
between. 

The particles’ trajectory is shown in Figure 1. We have 
that 
1） The range of Brownian motion is near the initial 

position, which means that the particle only reaches 
the local region in the search process. 

2） During Lévy flight, the particle jumps frequently, 
which makes the particle have a wider search range 
than Brownian motion. 

3.3 Some discussions on FPSO 

3.3.1 Multiplicative randomness or additive 
randomness 

For the algorithm defined in (14), randomness exists in the 
form of multipliers in the population iteration. Consider 
two extreme cases: 

a) Assuming that all particles have the same initial 
value, the population will not be updated at this time and 
fall into the initial position. 

b) Assuming that the population has only two particles, 
the search direction of the particles will only be on the line 
between the two. 

If during the population iteration, the randomness 
exists in the form of an addend: 

  1k k k k
i i k i b ix x x x       (16) 

where   is the scale parameter, while k
i  is randomness 

of a given distribution. With such additive randomness: 

a) Even if all particles have the same initial value, the 
population will be updated. 

b) The particles would still search a wide range to find 
a feasible solution if the population has only two particles. 

3.3.2 The impact of the number of particles on the 
performance of algorithm 

In the traditional particle swarm algorithm, due to the poor 
global optimization ability of particles, a certain number 
of populations are needed to complete the optimization 
process. However, the fractional particle swarm algorithm 
greatly reduces the number of particles required due to the 
large step size jump of the particles, so that the number of 
iterations of the algorithm is greatly reduced, and the 
performance of the algorithm is effectively improved. 

3.3.3 Initial position insensitivity 

The traditional particle swarm algorithm has a small 
optimization range, so it is necessary to distribute the 
particles as evenly as possible in the solution space at the 
beginning of the population iteration. But for some large-
scale nonlinear optimization problems, it is difficult to 
determine the range of the solution space or the 
dimensionality hazard problem caused by the huge 
number of optimization variables. The large step size jump 
of the fractional particle swarm algorithm in the iterative 
process can avoid the difficulty of selecting the initial 
value of the population. Even if all the particles are placed 
in a fixed initial position, the particles can still achieve a 
large-scale optimization. 

4 Case studies 

The simulation of solving DG planning model using FPSO 
is carried out on the IEEE 33-bus system, and IEEE 33-
bus system data reference [15]. The relevant planning data 
is now explained: the planning period is 20 years, the 
discount rate is 0.1, and the candidate nodes for DG 
installation in the distribution network are nodes 3, 6, 7, 
13, 17, 19 and 31, each of which is to be selected The 
upper limit of the node's DG installation capacity is 
800kW. There are two types of DG: WTG and PVG. 
Related parameters of WTG: rated capacity of 50kW, 

3.5ciV  m/s, 12rV  m/s, 20coV  m/s; related parameters 

of PVG: rated capacity of 50kW, =1000rS W/m2. The 

wind speed in this area obeys the Weibull distribution with 
parameters 1.83k   and 9.93c  , and the light intensity 
obeys the Beta distribution with parameters =2.06 ,

=2.5 . WTG investment and operation and maintenance 
costs are 10000 yuan/kW and 0.33 yuan/kWh, respectively, 
and PVG investment and operation and maintenance costs 
are 13000 yuan/kW and 0.1 yuan/kWh, respectively. The 
load follows a Gaussian distribution, and the standard 
deviation is 10% of the mean. The fluctuation range of the 
node voltage is 0.9-1.1 (standard unit value), and the upper 
limit of the current of each line can be found in literature 
[15], confidence level 0.95U I   . The electricity price 

is 0.7 yuan/kWh, the government subsidy is 0.25 
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yuan/kWh, and the annual maximum load hours is 4200 
hours. 

Aiming at the economic optimization problem of DG 
location and capacity described in section 2.2, the 
traditional PSO and the FPSO mentioned in this paper are 
used to solve the problem. The results are shown in Table 
1, Table 2 and Figure 2. Among them, Table 1 is the 
solution result of the DG installation location and capacity, 
and compares the two with the annual comprehensive cost 
of the distribution network without DG; Table 2 is the 
composition of the annual comprehensive cost; Figure 2 is 
a visual description of the solution result. 

Table 1. The result of the case 

Algorithm Location and Capacity 
Costs / 

 (10,000 CNY) 

No DG None 931.6664 

PSO 
3(1, 1), 6(3, 1), 7(3, 2), 
13(3, 1), 17(2, 1), 19(3, 

1), 31(2, 2) 
898.0473 

FPSO 
13(7, 0), 17(1, 3), 

31(10, 5) 
892.2336 

NOTE: 3(1, 1) means that there are 1 WTG and 1 PVG at bus 3. 
 

Table 2. Composition of the annual comprehensive cost 
Parts 

/ (10,000 CNY) 
No DG PSO FPSO 

IC  0 168.5546 166.7927 

OMC  0 73.5596 75.6952 

LC  41.6899 36.9013 35.7371 

PC  889.9765 686.4820 681.7741 

SC  0 67.4502 67.7655 

Total 931.6664 898.0473 892.2336 

It can be seen from Table 1 that the optimization result 
of FPSO is better than that of PSO. Judging from the cost 
composition in Table 2, the access of DG has reduced the 
cost of active power loss of the distribution network, and 
the cost of purchasing power from the upper-level grid has 
been greatly reduced by the distribution network. It can be 
concluded that the access of DG is conducive to system 
energy saving and emission reduction. From the point of 
view of the location of the DG in the optimization results, 
since the IEEE 33-bus system is a radial distribution grid, 
installing DG at a bus far away from the upper-level grid 
is beneficial to the stability of the grid voltage. 

The comparison of the algorithm convergence 
characteristics is shown in Figure 3. It can be seen that the 
PSO has fallen into the local optimum during the 
optimization process, while the FPSO has jumped out of 
the local optimum many times due to the large step jumps 
of Lévy flight, thereby obtaining better optimization 
results.  

 
Figure 2. The location and capacity of DG in IEEE 33-bus 

system  
 

 
Figure 3. Convergence characteristics comparison of PSO and 

FPSO 

5 Conclusion 

Under the premise of DG and load uncertainty modeling, 
this paper aims to optimize the economy of the distribution 
network, and establishes a DG location and capacity 
planning model based on opportunity constraints. Aiming 
at the limitations of traditional PSO for solving large-scale 
optimization problems, the FPSO is proposed to solve the 
above model. FPSO has obtained a more economical DG 
configuration result in the IEEE 33-bus system, from 
which the following conclusions can be drawn: 

a) The access of DG reduces the active network loss of 
the system, reduces the comprehensive annual cost of the 
system, and improves the economy of the system. 

b) Optimizing the location and capacity of DG can 
improve the level of renewable energy consumption in the 
distribution network, which is conducive to the realization 
of low-carbon and green production of electric energy. 

c) Compared with PSO, FPSO has higher solving 
efficiency and convergence accuracy on complex 
optimization problems, and it can avoid the difficulty of 
selecting the initial value of PSO. 
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