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Abstract. This paper compares the results of the well-known Spalart-
Allmares (SA) model and the two-fluid model for the flow around a heated 
flat plate. These models represent different approaches to the problem of 
turbulence. The SA model is a one-parameter model and a representative 
of the RANS models. This model is currently the most popular and is used 
to solve many practical problems. The advantage of this model is that its 
accuracy is quite good and simple for numerical implementation. 
Therefore, the SA model is included in almost all the codes of the software 
package. The two-fluid model used in this work has been developed 
recently [15]. In the pioneering works, it is shown that the basis for 
constructing this model is the possibility of representing a turbulent flow in 
the form of a heterogeneous mixture of two liquids. Therefore, this model 
is derived from the dynamics of two liquids. In these works, it is also 
shown that the developed two-fluid model is able to adequately describe 
complex anisotropic turbulences. The fundamental difference between 
these two models is that the SA model uses the substance transfer equation, 
while the two-fluid model uses the dynamics equation. To compare the two 
models, we compare their numerical results with the known experimental 
data. It is shown that the results of both models are close to each other and 
are in good agreement with the experimental data. 

1 Introduction 
A large number of scientific publications are devoted to the study of heat transfer in a 
turbulent flow past a heated flat plate. Despite its simplicity, this task makes it possible to 
reveal the general laws of heat transfer in a near-wall turbulent flow. The plate 
longitudinally streamlined by laminar and turbulent flows is one of the most widespread 
surface elements of modern heat exchangers. Even the initial section of the pipe can be 
viewed as a plate. Therefore, the knowledge of the flow patterns of heat transfer processes 
on the plate, from the point of view of modern practice and the theory of heat transfer, 
remains highly relevant. Often, when developing exact and approximate analytical methods 
for solving various heat transfer problems, for the purpose of their verification, they turn to 
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the flow past a flat plate, which once again confirms the importance of accurate knowledge 
of the patterns of its heat transfer. The results of the well-known Spalart-Allmares RANS 
model and a new two-fluid model for flow past a heated flat plate are compared in the 
article. These models represent different approaches to the problem of turbulence. It is 
known that the SA model is a model of the Reynolds approach, and the two-fluid model is 
based on the dynamics of two fluids. 

2 Materials and Methods 
Reynolds approach and the Spalart-Almares (SA) turbulence model. Let us consider a 
flat plate heated by turbulent air flow with a zero pressure gradient. The plane stationary 
motion of an incompressible fluid in the absence of mass forces and with variable physical 
properties is expressed by the Reynolds averaged Navier-Stokes equations [1]: 
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where ,u are radial and axial velocities, ν, νt  are the molecular and turbulent viscosity, 
Pr, Prt are molecular and turbulent Prandtl numbers [12]. This system of equations is open 
(incomplete) and, to close it, various RANS turbulence models were used. For this purpose, 
the well-known Spalart-Allmaras turbulence model was used in this study. This model 
belongs to the class of one-parameter turbulence models, as only one additional equation is 
used to find the unknown turbulent viscosity. The practice has shown that it is a low-
Reynolds-number model that describes the entire flow region, including the near-wall 
layers. It has good stability and reliability and does not require high density computational 
grid [2]. The SA model has the form: 
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Here  wP  and wD  are both the generation and dissipation terms. Unknown functions are 
defined as follows: 
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The rest of the quantities are constants of the model and are presented in detail in [2]. 
New two-fluid turbulence model. A mathematical model of turbulent heat transfer 

based on the two-fluid dynamics is presented in detail in [3], and its application to heat 
transfer is given in [4]. The two-fluid model in the Cartesian coordinate system has the 
following form: 
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Let us reduce the system of equations to a dimensionless form. To do this, we correlate 

all velocities to the oncoming flow velocity 𝑈𝑈∞ and all distances to the length 𝐿𝐿 = 𝜈𝜈𝜈𝜈𝜈𝜈/
𝑈𝑈∞, and temperatures to the oncoming flow temperature  𝑇𝑇∞. 
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where 𝑃𝑃𝑃𝑃 = 𝜈𝜈/𝜅𝜅 is the Prandtl molecular number. The coefficients of friction and heat 
transfer have the form: 
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In this expression 939.01 tC , 1.02 tC , 2.0sC , 7825.01 C , 306.02 C  are 

the empirical constants, 𝜏𝜏𝑤𝑤  is the friction stress, 𝑞𝑞𝑤𝑤  is the heat transfer flow of the wall. 
An identical algorithm was used for the numerical implementation of the models. For 

this, we introduce a generalized stream function ψ for which the following relations are 
true: 
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Then the equation of continuity in systems (1) and (4) will be satisfied automatically. 

Let us write system (1) and (4) in von Mises variables ),(   [5]. The derivatives are 
determined by the formulas: 
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In the new variables, the system of equations (1) and the Spalart-Allmares model have 
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The system of equations of turbulence of the two-fluid model in new variables has the 

form: 
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Numerical calculation of the systems of equations (6) and (7) was conducted using an 

implicit finite difference scheme. In the transverse direction, the center difference was used. 
The sweep method was used to solve the implicit scheme. The integration steps were

00002.0 , 0002.0 . The number of design points in the transverse direction 
was 500. The following boundary conditions were set for the problem: on the wall, i.e., at 

:0  0 vuU  and at : :. 0,1  vuU , at 0  and   . The 
calculations were conducted at the Reynolds number Re=5·106. Thus, until the section

:0  the flow was uniform, and then it became turbulent due to an increase in the 
relative velocities of the moles. 

3 Results and Discussion 
Here are some specific examples that briefly illustrate the properties of the above turbulent 
models. Figures 1 a, b and c show the results of two turbulent models. They also present 
experimental data from [8] for the temperature profile at various Prandtl numbers. 
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Fig. 1. a, b and c the results of two turbulent models 
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Figures 2 a, b, c and d show comparisons of the results of two turbulent models with 
experimental data given in [8] for the Nusselt number xNu  at different Prandtl numbers. 

It is known that the characterizing parameter of a body heat transfer is the Stanton 
number: 
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To describe the heat transfer properties of a plate in a turbulent flow, the Nusselt 

number .PrRe StNu xx   is a convenient parameter. 
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To describe the heat transfer properties of a plate in a turbulent flow, the Nusselt 

number .PrRe StNu xx   is a convenient parameter. 

Comparing the numerical results obtained, Figures 2 a, b, c and d  show the values of 
the Nusselt number from empirical formulas of Leinhard [7] and Karman [8]. The empirical 
expression for the Stanton number, according to Lainhard, has the form: 
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Fig. 2. a, b, c and d show comparisons of the results of two turbulent models with experimental data 
given in [8] for the Nusselt number xNu  at different Prandtl numbers 

4 Conclusions 
The results of turbulent models of the Reynolds approach and the two-fluid approach for 
turbulent flow past a heated flat plate are compared in the article. The study showed that 
both models describe well the heat transfer process. However, the two-fluid model has the 
advantage of describing complex anisotropic flows for numerical implementation. 
Therefore, the new two-fluid model can be successfully used in more complex heat transfer 
problems. 
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