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Abstract. A mathematical model of the problem of pulse propagation in a 
semi-infinite gas pipeline was developed by expressing the pressure drop 
by the quadratic law of resistance and the local component of the gas 
inertia force by the law of conservation of momentum, using the law of 
conservation of mass in a one-dimensional statement. The model repeats 
the Riemann problem but takes into account the frictional resistance force. 
Using an auxiliary function in the form of the natural logarithm of the 
reduced density, and gauge functions, and certain simplifications, an 
equation for the reference solution of the problem in terms of gas velocity 
was derived and solved. For the analytical solution of the problem on gas 
velocity, the Riemann solution was used, and a refined analytical solution 
was obtained considering the quadratic law of resistance for the calculation 
of the perturbed and non-perturbed subdomains. 

1 Introduction 
Trunk gas pipelines are the main part of the gas transportation system [1]. The greater share 
of energy costs in pipeline gas transportation falls on this part of the system. The 
characteristics of the pipeline network and the set technological tasks are the determining 
factors for the operating mode of other equipment of the system. In this regard, it is 
important to ensure the ability to calculate the operating mode of the trunk gas pipeline with 
a sufficient degree of accuracy. At the same time, consideration should be given to all basic 
factors affecting the operation of the trunk gas pipelines. Despite the seeming simplicity of 
the gas pipeline design, complex processes of motion, friction, interaction with gravity 
forces, internal and external heat transfer take place in it. These processes, as a rule, change 
over time; that is, they are non-stationary processes.  

In [2], a method is proposed to determine the boundaries of the preferred application of 
a stationary model and the model that describes the non-stationary process of the gas 
pipeline operation. The study in [3] is devoted to the modeling and numerical calculation of 
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the network of the gas-distribution pipelines with special emphasis on the elementary 
sections of the gas pipeline. In [4], the problems of optimal control of the gas flow in the 
pipeline network are considered. Quasi-one-dimensional equations are constructed from the 
complete nonlinear isothermal Euler gas equations. The problem of optimal control in the 
gas pipeline network is formulated, and its time discretization is performed. In [5], a 
solution to the actual applied problem of gas quality control is proposed for an extended 
multilayer-insulated underwater high-pressure gas pipeline under non-stationary non-
isothermal operation. A mathematical model and an algorithm for calculating the 
composition, pressure, velocity, and temperature of a non-stationary non-isothermal gas 
flow under high operating pressures were developed. A computational experiment was 
conducted using the developed model. 

In [6], a mathematical model of the transition process in gas pipelines and networks is 
proposed. Modeling is based on the transfer function introduction and the finite volume 
method. Nonlinear transfer functions are constructed for various types of boundary 
conditions. In [7], the possibilities of applying the results of mathematical modeling of 
trunk pipelines to the problems of preliminary calculation of technological and design 
parameters of natural gas transportation sections are considered.  

Simple analytical formulas were obtained to determine the mass flow rate, pressure, and 
supercompressibility coefficient [8]. But the distribution of the mass flow rate of gas 
between parallel threads with a variable gas supercompressibility coefficient occurs as it 
was in the case of a constant value of the gas supercompressibility coefficient. The 
difference lies in the definition of the input and output pressure values, i.e., when solving 
transcendental equations. 

According to the canons of the turbulence theory, large eddies present in a turbulent 
flow, by a cascade transition, come to such a size of eddies (Kolmogorov scale), which, 
further decaying, go to thermal energy. In work [9], a check was made of the position often 
used in pipeline hydraulics. The work of friction forces produced when a real gas moves 
through a gas pipeline is completely converted into thermal energy. Using the integral 
definition of the Clausius entropy, it is shown that this thesis is confirmed with an accuracy 
acceptable for engineering applications as applied to the one-dimensional formulation of 
the problem of determining the longitudinal temperature field of gas. From the point of 
view of the reliability of the pipeline network, resonance phenomena are of great 
importance. In particular, a decrease in the inlet pressure or flow to the blower can 
lead to a surge phenomenon, which is fraught with danger due to the formation of 
oscillations of the entire pipeline network. And in [10], the case was considered 
when the piston's oscillation generated vibration at one end of the pipeline. 

The article [11] presents the results of a study of a gas pipeline under conditions of heat 
transfer with soil. According to a simplified heat transfer model, stable, one-dimensional 
non-stationary, and two-dimensional non-stationary thermal state of gas during heat 
exchange between the pipe wall and the ground according to a simplified heat transfer 
model are studied. The influence of rapid changes in the mass flow rate of gas and 
temperature at the inlet to the pipeline is considered. The presented case is typical for 
export gas pipelines containing offshore and in-depth sections along the route. The results 
are compared with experimental data from an existing export gas pipeline.  

Below we consider a problem when, at 0x  , the boundary condition is set, and at 
0t  , conditions are set in the form of path changes in the gas velocity and its first-time 

derivative. The considered solution region is the left semi-axis x  0 .x   A solution 

concerning the gas velocity is obtained, which, as 0  , turns to the well-known 
Riemann solution. 
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Materials and Methods 

Ignoring the convective component of the gas inertia force and the path inclination from the 
horizon, the quasi-one-dimensional equations of conservation of momentum and mass have 
the following form [12, 13]:  
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 here ,x t  are the distance and time; , ,u p   are the average values of velocity, 
pressure, and density of gas in the section x  at the time point t ; 2D   is the 
parameter of resistance force in the Darcy-Weisbach law; , D  are the friction drag 
coefficient and pipeline diameter. 

In the absence of external disturbances, the boundary value problem can be posed with 
the following boundary condition 

 
   0,u t t                                                              (2) 

 
with initial conditions 
 

   ,0 ,u x x                                                         (3) 

   ,0
.

u x
x

t






                                                       (4) 

 
Thus, the problem of the gas-dynamic state of a semi-infinite pipeline  0 .x   is 

solved in this article. 
An introduction of the propagation velocity of small disturbances c p ZRT     

in a real gas ( , ,Z R T  are the supercompressibility factor, reduced gas constant, and 
average gas temperature, respectively) transported through the pipeline and of an auxiliary 
function 

 ln ,                                                                  (5) 

 

where   is the characteristic gas density, and ignoring the term in the second equation, 
which at low hydrodynamic velocities and small density perturbations is a small value, 
allows us to write system (1) in the following form: 
 

2 2 , 0.u uc u
t x t x

    
    

   
                                                 (6) 

 
In numerous literary sources, including textbooks [10], this system is analyzed and 

solved without the right-hand side in the first equation. 
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In some cases, gauge functions are introduced [15]. 
 

,A u c    .B u c                                               (7) 
 

Then, system (7) takes the form: 
 

2 2, .
A A B B

c u c u
t x t x

 
   

     
   

                                 (8) 

 
From this system of equations, for example, an equation relative to velocity 
     , , , ,u x t A t B t   can be derived 

 

2 , .du dx dx c
u c dt


    

 
where  0

0,u u     is the solution to the homogeneous system (1), i.e., at 0  . 
Hence, the reference solution to the problem is found as 

 
0

0
.

1

uu x u
c



                                                            (9) 

 
From this solution of the problem, the general pattern follows in the approximation of a 

long pipeline: the solution of the problem considering friction is less than the problem's 
solution without considering friction.  

Now we determine the value of 0u . 
Let us turn to the well-known solution of the Cauchy problem from mathematical 

physics [16]: 
 

       0 1, ,
2 2

x ct

x ct

x ct x ct
u x t d 







   
  

 
 
where   and   are the values of the unknown and its time derivative at 0t  . 

To have zero value of the unknown at 0x  , it is necessary to assume that 
 

 
 
 

0

0

x at х
x

x at х





  
 

      and        
 
 

0

0.

x at х
x

x at х





  
   

 
In this case  0 0, 0u t  , and then we can use the condition at 0x  . In addition, due 

to the fulfillment of the following conditions 
 

     0 ,0 ,u x x x   
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at 0x  , the solution satisfies two initial conditions. 

Then, taking into account the velocity perturbation in section 0x  , we can write down 
the solution to the problem as:   
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Substitution of 0u  into equation (9) leads to the result for the gas velocity: 
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
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Thus, an analytical solution to the formulated problem was obtained for the 

hydrodynamic gas velocity. 
This solution generalizes the known solution of the Riemann problem taking into 

account the quadratic law of resistance in a gas pipeline. Indeed, if we assume that 0  , 
then a classical Riemann solution [14] on a unilateral wave is obtained. 

To present the complete picture, it is necessary to find a solution to the pressure 
problem, for which one can turn to the numerical method. 

The transition to discrete coordinates is performed so that the pulse jump falls on the 
calculated node. This choice of discrete coordinate steps makes it possible to determine the 
value of the pressure jump at the shock front. To confirm this statement, let us turn to the 
next problem. 

We assume that before the onset of disturbances, the gas is at rest, and at 0t   in the 
inlet to the section, the gas velocity instantly increases to U and then, this constant value of 
velocity in the inlet remains. Accordingly, the initial pressure value and the pressure value 
in the unperturbed region is P . Following this, the initial value of the density and the value 
of the gas density in the unperturbed region is 2

0 /P c  , i.e., 0  can be taken for the 

characteristic gas density. The auxiliary function has a value of 
2

0

ln ln c
P

 


 . In the 

unperturbed calculation zone, we have 0, 0u   . 
Let us assume that the pulse wave reaches the node n  in time, which corresponds to the 

coordinate x nh . The gas velocity at this point is 
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nhu U U
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 

. 

 
and at the nodes following the disturbance front along x, the gas is at rest, in particular: 

1 0n
nu   . 

Then from the second equation of system (6), it follows that 
 

1
1

n n n n
n n n nu u

h
 




 

   

 
Here we used the backward pattern in time and the forward pattern along the x 

coordinate. Since at i n  the gas is at rest, the equations 1
1 0, 0n n

n nu  
    hold.  So, 

n n
n nu

h
   it follows from the last finite difference equation. Considering /h c  , we 

obtain 

0

ln ln
n n n
n n np u

P c



   

 
By potentiating these relations, we obtain the density values 

 

0
n
n

Uеxp
c nhU

 


      
 
and the pressure values 
 

n
n

Up Pеxp
c nhU

      
 
on the disturbance front for the n -th time step. 

As *x nh  is the coordinate of the wave front, the last relations can be written in the 
following form  

 *
*

cUu x
c x U




,    *
0 *

Ux еxp
c x U

 


    
,  *

*

Up x Pеxp
c x U

    
. 

 
From the last formula, it follows that the highest-pressure value is 

 
 *

0 /p Pеxp U c  
 
that is,  /еxp U c -times jump is expected at the beginning of the process, and then, as the 
disturbance propagates, the pressure jump decreases. 
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Taking into account the obtained value of  n
n  at the disturbance front and the known 

values of 
n
iu  and 1n

iu  , we turn to the first equation of system (6), represented in a discrete 
form as: 
 

 
1 21 1 1

12

1n n n n
ni i i i
i

u u u
h c

  



  



  
   

 
 

 
Here it is taken into account that the pressure change occurs against the direction of 

pulse wave propagation. 
The last finite difference equation implies the recurrence formula 

 

 
1 21 1

1 12

n n
n n ni i
i i i

u uh u
c

  



 

 

 
   

 
 

 
which allows us to calculate the values of the auxiliary function at 1..0i n  .  

Based on the value of  n
nu  and dependence 

 
2 1

2
d

u U
x dy yc

 
  



 
 
   

 
where the designation y c xU   was introduced, the value of the auxiliary function 
can be analytically determined as 
 

   *
*

1 1 .x x
c xU c x U

 
 

  
   

 

With 
n
iu  and n

i  the values of ,n
i

n
ip  and  n n n

i i iM f u  are determined (mass 

flow 2 / 4f D  is the cross-sectional area of the pipeline). 

3 Results and Discussion 

A computational experiment was conducted for a pipeline of a diameter of 1 m, a resistance 
coefficient of 0.01 at 10.005 m  . At the beginning of the section, the case was 
considered when the velocity increased from 0 m/s to 20 m/s. The sound propagation 
velocity was 378.21 m/s. 

The results are presented in the form of contour lines of average velocity and mass flow 
rate. The isobar field obtained is similar to the one in Figure 1. 
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Fig. 1. Isolines of average velocity of gas in 
plane  , /x ct l . 

Fig. 2. Isolines of mass flow rate in plane 
 , /x ct l . 

4 Conclusions 

The paper proposes a mixed method for studying the wave flow of gas in a semi-infinite 
pipeline. In contrast to the known problems, the propagation of a unilateral wave is 
considered. The conditions for the uniqueness of the solution to the problem for the gas 
velocity are taken in the form of one boundary and two initial conditions. 

With the introduction of an auxiliary function in the form of the natural logarithm of the 
reduced density and with the use of gauge functions, the equations are presented in a 
simpler form concerning the reference solution of the problem. The reference solution was 
refined by reducing it to the Riemann problem, but taking into account the quadratic law of 
resistance, and an exact solution to the problem concerning the gas flow rate was obtained. 
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