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Abstract. A mathematical modeling and numerical solution of the 
motion of the droplets of chemical reagents outflowing from the 
pneumatic sprayer are developed in the article. A new efficient 
two-fluid turbulence model is used to simulate turbulent flow. The 
mass fraction of liquid in the gas stream is considered small. 
Therefore, the effect of the liquid phase on the dynamics of air is 
ignored. The "parabolize" system of hydrodynamic equations is 
solved for the gas flow. For this, a marching method of integrating 
equations is used. The Lagrange approach is used to find the 
droplet trajectories. It is shown that the new turbulence model can 
be successfully applied to study two-phase submerged jets. The 
solutions obtained made it possible to determine a pattern of the 
field treatment by chemical reagents and define the sprayer's 
optimal parameters. 

1 Introduction 
In the cultivation of agricultural crops, special attention is paid to the technological process 
of spraying plants to protect them from pests, diseases, and weeds. Hundreds of thousands 
of tons of pesticide working solutions turn into droplets every year. The size of the droplets 
determines different properties of the chemicals:  the rate of sedimentation and evaporation, 
the degree of inertial sedimentation, wind entrainment and scattering in the surface layer of 
the atmosphere, wetting of various surfaces of plant cover tissues, and retention of the 
working fluid on them, the rate of penetration of pesticides into leaf tissue, and other 
properties. A narrow range of droplet sizes, optimal for each specific case, characterizes a 
promising technology implemented by the method of spraying, which meets the ever-
increasing requirements of resource-saving, high productivity, and environmental 
friendliness [1]. 
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However, traditional technologies for spraying vegetative plants, widely implemented 
using boom-type tractor sprayers (trailed, mounted, self-propelled ones) with hydraulic flat-
flare (standard or anti-wearable) sprayers, do not sufficiently meet modern requirements. 
Consumption rates of working solutions during their operation are 100-300 dm3/ha, and the 
average droplet size is µm500250  . The consumption of pesticides, calculated for 
technological losses and constructive imperfection of spraying equipment, is greatly 
overestimated. Small droplets (less than 80 µm) are carried away outside the cultivated 
field, and large droplets (more than 300 µm) roll off the plants, contaminating the soil [1]. 
Large droplets formed in the initial area of the spray cone of fluid, as a result of 
coagulation, are among the main reasons for the waste of pesticides. 

The increased concentration of droplets in the cones of sprayed liquid of boom sprayers 
causes coagulation and a substantial decrease in their number, which in turn requires tens of 
times more flow rate of the working fluid per unit of the treated area. In addition, with fine-
drop spraying of a liquid, the droplets are carried into the environment. To solve this 
problem, the recommended height of the nozzles on the sprayer boom (0.5 m) limits its 
travel velocity to 12 km/h, especially with a wide-grip boom. At its vibrations up to 120, 
there is a danger of the edges touching the ground. Turbulent air vortices appearing behind 
the boom during the sprayer motion increase the sprayed liquid droplets entrainment into 
the environment [2]. 

In this regard, the study of drop dynamics is an urgent task when designing new devices 
for spraying chemicals. A great number of publications are devoted to the study of the 
dynamics and heat- and mass-transfer of droplets. For example, the dynamics of liquid-drop 
refrigerant during aircraft fire suppression is studied in [3]. In that article, the motion of 
droplets in the air at rest is considered. In contrast to that article, the authors of the current 
article investigate the dynamics of droplets of chemical reagents in a turbulent flow formed 
by a pneumatic sprayer. 

The schematic diagram of this device is shown in Figure 1. The principle of operation of 
a sprayer is that the resulting droplets from centrifugal nozzles are carried away by an air 
stream and directed to the plants. As a result of the influence of the air flow on the plants, 
the degree of penetration of droplets onto the undersides of the leaves increases 
substantially. The process takes place at high Reynolds numbers [23-26]. Therefore, the air 
flow has a purely turbulent character. Therefore, the kinematics of droplets should be 
considered based on the theory of flow turbulence. 

 

 
Fig. 1. Schematic diagram of the sprayer 

When modeling the kinematics of droplets, it is assumed that the mass of the liquid 
phase per unit volume of air is much less than the mass of the air flow. This assumption 
greatly simplifies the task under consideration. Because in this case, the influence of the 
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liquid phase on the dynamics of the air flow can be ignored, i.e. the liquid phase can be 
considered a passive impurity. Consequently, the problem is divided into two independent 
tasks: the first problem is modeling and solving the dynamics of an air turbulent jet; the 
second problem is based on the obtained pattern of the air velocity field at modeling and 
numerical study of the droplet motion. 

For almost 100 years modeling a turbulent submerged jet has attracted the interest of 
many researchers. This is because jet streams are widely used in engineering and 
technological processes. It is known from the classical literature that the first major step in 
modeling jet streams belongs to the Prandtl theory of the mixing paths of a turbulent flow. 
This theory made it possible to close the system of Reynolds-averaged Navier-Stokes 
equations (RANS) and obtain a solution on a self-similar section, i.e. at long distances from 
the nozzle. However, in many situations, serious and interesting processes occur near the 
nozzle exit. In such cases, the use of Prandtl theory can be considered a rough estimate of 
the process. Currently, many different RANS turbulence models were developed for 
calculating turbulent jets; they allow one to obtain an adequate solution at the initial, 
transitional, and self-similar sections. These models include various modifications of 

  kk , , SA, SST [4-7] and other models. Despite the many RANS models 
developed, virtually all of them suffer from the so-called "round jet anomaly". According to 
RANS models, the essence of this phenomenon is that in the self-similar zone, a solution is 
obtained in which the jet expands 1.5 times more than is observed in experiments. 
Therefore, these models require different corrections for axisymmetric jets. This indicates 
that the universal RANS model has not yet been created. However, a recently published 
article [8] presents a new approach to solving the problem of turbulence. In that article, 
based on the two-fluid approach, a mathematical model was obtained, which was tested for 
turbulence problems. The new mathematical model was tested for several turbulence 
problems, and the results were compared with experimental data presented in the NASA 
database [9]. The advantage of the new model is its ease of application for practical tasks, 
high accuracy and stability, and the ability to describe anisotropic turbulence. In [10], the 
new model was used to simulate a two-phase medium in a centrifugal air separator. The 
current paper shows that the new two-fluid model more adequately describes turbulent 
swirling two-phase flows than the complex RANS models. The developed new two-fluid 
model has also been successfully applied for heat transfer [11]. The results obtained in this 
work showed that the new two-fluid model can describe in detail the heat transfer in areas 
where conventional RANS models cannot do this—for example, the transition zone of a 
viscous layer to a turbulent one. However, the main advantage of the developed two-fluid 
model is that it is able to adequately describe complex anisotropic turbulences. Therefore, 
in this work, a study of two-phase flow is carried out based on a new two-fluid turbulence 
model. 

2 Materials and Methods 
Turbulent jets are widely used in engineering and various technological processes. Therefore, a large 
number of scientific works are devoted to the study of turbulent jets [12-19]. Turbulent jets are a classic 
example of turbulence, and therefore, they are one of the important tasks for the verification of 
turbulence models. 

The study in [8] shows the possibility of representing a turbulent flow as a 
heterogeneous mixture of two fluids in relative motion. A summary of the essence of the 
new two-fluid model is also presented in the article published recently [10, 11]. In these 
articles, it was shown that the system of equations of the new approach for an 
incompressible fluid in tensor form has the following form: 
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In the above equations iV is the Reynolds-averaged flow velocity in the i-th direction, 

p  is the averaged pressure, i  is the relative velocity of the first fluid,   is the kinematic 

viscosity of the fluid,   is the fluid density, ij  is the effective molar viscosity tensor, 

fiF  is the friction force arising from the relative motion of the fluids , iF  is the shear 
force due to the shear velocity field, d  is the nearest distance to the solid wall,  λmax is the 
largest root of the characteristic equation   0det  EA  , where 𝐴𝐴 is the matrix. 
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Constant coefficients are 1 20.7825, 0.306.C C   
In the problem under consideration, the pressure is considered constant. The derivatives 

in the diffusion terms in the axial direction could be ignored due to their smallness. Since 
there are no solid walls in the problem under consideration, we can assume that 02 C . 
These assumptions are common and greatly facilitate the solution to the problem; the 
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equations take on a parabolic form, and the problem can be solved numerically by a 
marching method. 

Let us reduce the system of equations (1) to a dimensionless form by relating all 
velocities to the jet velocity at the exit from the nozzle jetU , and relating the distance to 

the radius of the nozzle 2/jetD ; the system is written in cylindrical coordinates. For this, 
we introduce the notation 
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To integrate system (3), an implicit scheme with a central difference in the transverse 

direction was used. 01.0,0001.0   integration steps were used. The 

number of nodes in the radial direction was 600. System (3) was solved at Re = 200000.  
Initial conditions were set at the nozzle exit and corresponded to experimental 
measurements 2/1028.0,055.0,1 rV rzz   . 

3 Results and Discussion 
To confirm the adequacy of the new two-fluid turbulence model, Figures 2 - 4 show a 
comparison of the numerical results of the system (3) with the experimental results. Figure 
2 shows the profiles of dimensionless velocities in various sections for the initial and 
transitional sections of the jet. Here the experimental data were obtained from the NASA 
database [9]. 
 

 
Fig. 2. Profiles of dimensionless longitudinal velocity in various sections for the initial 
 and transitional sections of an axisymmetric jet. 
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3 Results and Discussion 
To confirm the adequacy of the new two-fluid turbulence model, Figures 2 - 4 show a 
comparison of the numerical results of the system (3) with the experimental results. Figure 
2 shows the profiles of dimensionless velocities in various sections for the initial and 
transitional sections of the jet. Here the experimental data were obtained from the NASA 
database [9]. 
 

 
Fig. 2. Profiles of dimensionless longitudinal velocity in various sections for the initial 
 and transitional sections of an axisymmetric jet. 

Figure 3 shows the dependence of the dimensionless axial velocity on the distance to 
the nozzle. Here the experimental data were also obtained from the database given in [9]. 
Figures 2 and 3 show the agreement of the results of the new two-fluid model with the 
experimental data in the initial and transitional sections. 
 

 
Fig.3. The dependence of the dimensionless axial longitudinal flow velocity on the distance to the 
nozzle. 

The airflow rates obtained make it possible to determine the trajectory of reagent 
droplets. The set task is three-dimensional because gravity forces act on the droplets. As a 
result, the symmetry of the droplet motion relative to the axis is maintained. Therefore, we 
consider the motion of droplets coming out of the nozzles located in a vertical plane along 
the nozzle diameter. The resulting droplet trajectories from these nozzles give us a pattern 
of the sprayed area. The trajectory of droplets from the lower nozzle gives us the near 
boundary, and the trajectory of droplets from the upper nozzle gives us the far boundary of 
the treated zone. When simulating the kinematics of reagent droplets, we ignore the change 
in their size due to evaporation. This assumption is justified by the fact that the 
characteristic time for the evaporation of droplets of a size of the order of 300 μm during 
the processing season is substantially longer than the characteristic time for the droplets to 
fall to the plants. The process of coagulation of droplets is also not taken into account in 
mathematical modeling of the kinematics of droplets. Under these assumptions, the time-
averaged equations of motion for droplets has the following form: 
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In these equations dz  and dr  are the axial and radial velocities of the droplet, 

respectively; dz and dr  are the longitudinal and radial coordinates of the droplet, 

respectively; k is the coefficient of interaction between the droplet and the air, g is the 

acceleration of gravity. The nozzle exit section 0Rr  corresponds to the location of the 
upper nozzle, and the section 0Rr   corresponds to the lower nozzle. 

Since the flow around large droplets is considered, the flow regime can be turbulent. 
Therefore, the Klyachko formula is used, which describes well the coefficient of interaction 
between phases in a wide range for the Reynolds number Red  [21]: 
 

24 2/3(1 0,17 Re ), Re
Re

V Vd
k d d

d






      (5) 

 
In this expression, 0 is the density of the fluid droplets,  is the "effective" diameter 

of the droplet, and   is the dynamic viscosity of air. 
Thus, expressions (5) and the equation system (4) are mathematical models of the 

droplet motion. In this article, the systems of equations (4) were integrated using Euler's 
numerical method with second-order recalculation of accuracy [22]. 

Figures 4 and 5 show the trajectories of droplets exiting the sprayer by an air stream. 
 

  
a b 

Fig. 4. Droplet trajectories with diameters: a) 300 µm and b) 500 µm with a second nozzle angle of 
450 to the horizon. 

  
a b 

Fig. 5. Droplet trajectories with diameters: a) 300 µm and b) 500 µm with a second nozzle angle of 
300 to the horizon 
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Fig. 4. Droplet trajectories with diameters: a) 300 µm and b) 500 µm with a second nozzle angle of 
450 to the horizon. 
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Fig. 5. Droplet trajectories with diameters: a) 300 µm and b) 500 µm with a second nozzle angle of 
300 to the horizon 

In these figures, length dimensions are given relative to the diameter of the nozzles. The 
sprayer consists of two nozzles. One nozzle is located horizontally, and the second nozzle is 
at an angle to the horizon. The second nozzle is located at a distance 05l R from the first 
nozzle. Figure 4 shows the trajectories of droplets with diameters of a) 300 µm and b) 500 
µm with a second nozzle angle of 450 to the horizon.  

As seen from these figures, the droplets cover the fall surface inhomogeneously. There 
is a zone where reagent droplets do not fall. Therefore, to optimize irrigation, the angle of 
the second (side) nozzle was adjusted. Figure 5 shows the trajectories of droplets with 
diameters of a) 300 μm and b) 500 μm with a second nozzle angle of 300. 

The results obtained show that when the angle of the lower nozzle is located at an angle 
of 300 to the horizon, the uniformity of treatment by chemical reagents is substantially 
improved. 

The calculations were conducted at an air velocity at the nozzle exit of 50 m/s. The 
radius of the nozzles was R0 = 0.1 m. 

Conclusion 
1. In the article, to simulate the dynamics of a two-phase flow, a new effective two-fluid 

model of turbulence was used; the model made it possible to obtain solutions for a two-
phase jet for the initial, transitional, and self-similar flow sections. 

2. Based on the mathematical model of the two-phase jet, the optimal angle of the lower 
nozzle of the sprayer was determined. 

3. The mathematical model considered can be used to design various devices where a two-
phase flow occurs in a submerged jet. 
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