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Abstract. There are many underground tunnels of various shapes located 
in seismically active areas that need to be protected from seismic impacts. 
The paper considers the impact of harmonic waves on a cylindrical shell 
located in a viscoelastic half-plane. The study's main purpose is to 
determine the stress-strain state of a cylindrical shell when exposed to 
harmonic waves. The basic equation of viscoelasticity in displacements 
with the corresponding boundary conditions is obtained. The problem 
posed is solved in mixed potentials that satisfy the wave equation with 
complex parameters. The solution is expressed in terms of special Bessel 
and Hankel functions. As a result of multiple reflections, a system of 
algebraic equations with complex coefficients is obtained. In the future, 
this system is solved by the Gauss method with the selection of the main 
element. The analytical solution is obtained in infinite series, the 
convergence of which is investigated numerically. The numerical results 
were obtained using the MATLAB software package. The reliability of the 
research results is confirmed by good agreement with theoretical and 
experimental results and those obtained by other authors. 

1 Introduction 

To determine the dynamic stress-strain state (SSS) of underground tunnels and pipelines 
under the influence of seismic loads, various approaches are used [1-3]. The first approach, 
the so-called seismodynamic theory of foundations, was developed [4], which calculates 
underground tunnels and pipelines. The further development of this theory belongs to [5-7]. 
The second approach for determining the dynamic stress-strain state was proposed [8-10]. 
A third approach is the wave theory of the foundation, which is used for calculating 
underground structures, laid down [11]. Another way to determine the seismic stress state 
of structures of underground structures when calculating them on analog accelerograms is 
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associated with the use of wave dynamics methods. In the case of a sufficiently extended 
cavity and the action directed perpendicular to its longitudinal axis, the medium 
surrounding the cavity and the lining are under plane deformation, and the problem of 
determining the stress-strain state of the massif and lining is reduced to the plane problem 
of the dynamic theory of elasticity (or viscoelasticity). It is known that the length of seismic 
waves λ exceeds the diameters of the cross-sections of the tunnel. Of particular interest is 
when 𝐷𝐷𝜆𝜆 < 1. In [11], the problem of stress concentration in an infinite linear - elastic plane 
near a circular cavity of diameter D was solved during the propagation of longitudinal 
harmonic waves of length λ. The maximum coefficients of dynamic stress concentrations 
Kσ (the ratio of the maximum stresses on the hole contour to the amplitude of the incident 
plane of the wave) are investigated depending on the values of the parameter 𝐷𝐷𝜆𝜆 . At long 

wavelengths (𝐷𝐷𝜆𝜆 = 0.04:0.16), it turned out that the maximum coefficients of dynamic 
concentrations were 5-10% higher than static ones. 

 

 
Fig.1. Scheme of the effect of harmonic seismic waves on a cylindrical shell in a viscoelastic half-
space (𝛼𝛼 is angle of incidence of the wave, �⃗�𝑛  is the unit vector in the direction of propagation of 
seismic waves). 

Further development of the wave problem of underground structures is given in [12,13]. 
Because analytical solutions are limited with simple geometry, simple boundary conditions, 
and simple behavior of materials, therefore, to calculate the SSS of complex underground 
structures, numerical methods are used, for example, the finite element method, the 
boundary element method, the finite difference method and other methods [14,15 ]. In this 
paper, we consider the dynamic calculations of the stress-strain state of shallowly laid 
tunnel structures with a circular outline (at a distance of fewer than 5 diameters from the 
day surface) under the influence of seismic loads. 

2 Methods 

2.1 Statement of the problem and methods of solution 

Let us consider an isotropic elastic half-space, a circular infinitely extended cylindrical 
shell of radius R. The shell is characterized by the elastic model E0, Poisson's ratio 𝜈𝜈0, and 
density 𝜌𝜌0. A harmonic seismic load falls on the shell at an angle 𝛼𝛼 in Figure 1. The 
problem under consideration is reduced to the problem of plane deformation of the theory 
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of viscoelasticity. The equations of motion of a viscoelastic half-space and a circular tunnel 
in the absence of mass forces have the form [16]: 
 

�̃�𝜇к𝛻𝛻2�⃗�𝑢 𝑘𝑘 + (�̃�𝜆к + �̃�𝜇к)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�⃗�𝑢 𝑘𝑘 = 𝜌𝜌к
𝜕𝜕2�⃗⃗�𝑢 𝑘𝑘
𝜕𝜕𝑡𝑡2 , (к =1, 2) (1) 

 
where �⃗�𝑢 𝑘𝑘(𝑢𝑢𝑟𝑟 , 𝑢𝑢𝜃𝜃) is the vector of displacements of the medium, 𝛻𝛻2 is the Laplace 

operator, к is the density of the k-th body, 
 

�̃�𝜆к𝑓𝑓(𝑡𝑡) = 𝜆𝜆0к [𝑓𝑓(𝑡𝑡) − ∫ 𝑅𝑅𝜆𝜆к(𝑡𝑡 − 𝜏𝜏)𝑓𝑓(𝜏𝜏)𝑔𝑔𝜏𝜏𝑡𝑡
−∞ ] ; �̃�𝜇к𝑓𝑓(𝑡𝑡) = 𝜇𝜇0к [𝑓𝑓(𝑡𝑡) − ∫ 𝑅𝑅𝜇𝜇к(𝑡𝑡 − 𝜏𝜏)𝑓𝑓(𝜏𝜏)𝑔𝑔𝜏𝜏𝑡𝑡

−∞ ] (2) 
 

𝑓𝑓(𝑡𝑡) is arbitrary function of time 𝑅𝑅𝑘𝑘(𝑡𝑡 − ) and 𝑅𝑅𝜇𝜇𝑘𝑘(𝑡𝑡 − ) -relaxation kernels of the 
k-th material, 0𝑘𝑘 , 𝜇𝜇0𝑘𝑘 are instantaneous module of elasticity of the k-th material, k=1,2. At 
the contact between the surrounding viscoelastic medium and the circular tunnel, the 
condition of tight fixation (or sliding) is set: 

 
𝜎𝜎𝑟𝑟𝑟𝑟

(𝑘𝑘) = 𝜎𝜎𝑟𝑟𝑟𝑟
(𝑘𝑘+1), 𝜎𝜎𝑟𝑟𝜃𝜃

(𝑘𝑘) = 𝜎𝜎𝑟𝑟𝜃𝜃
(𝑘𝑘+1) 

(3) 

𝑢𝑢𝑟𝑟
(𝑘𝑘) = 𝑢𝑢𝑟𝑟

(𝑘𝑘+1), 𝑢𝑢𝜃𝜃
(𝑘𝑘) = 𝑢𝑢𝜃𝜃

(𝑘𝑘+1) 
 
If there is no friction at the contact boundary then 
 

𝜎𝜎𝑟𝑟𝑟𝑟
(𝑘𝑘) = 𝜎𝜎𝑟𝑟𝑟𝑟

(𝑘𝑘+1), 𝑢𝑢𝑟𝑟
(𝑘𝑘) = 𝑢𝑢𝑟𝑟

(𝑘𝑘+1),  𝜎𝜎𝑟𝑟𝜃𝜃
(𝑘𝑘) = 𝜎𝜎𝑟𝑟𝜃𝜃

(𝑘𝑘+1) = 0   (4) 

On the free surface, conditions of stress freedom are set. At infinity, the Sommerfeld 

radiation conditions are set 

 

lim
𝑟𝑟→∞

𝑔𝑔𝜙𝜙1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 , lim
𝑟𝑟→∞

𝑔𝑔 (𝜕𝜕𝜙𝜙1
𝜕𝜕𝑔𝑔 − 𝑔𝑔𝑖𝑖𝑖𝑖) = 0 

lim𝑟𝑟→∞ 𝑔𝑔𝜓𝜓1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 , lim𝑟𝑟→∞ 𝑔𝑔 (𝜕𝜕𝜓𝜓1
𝜕𝜕𝑟𝑟 − 𝑔𝑔𝑖𝑖𝜓𝜓1) = 0   (5) 

 
An incident plane wave is considered to propagate in the positive direction of the x-axis 

at an angle 𝛾𝛾0 and is represented as follows: 
 

𝜙𝜙(𝑝𝑝) = 𝜙𝜙0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾0 𝑒𝑒𝑖𝑖(𝛼𝛼𝛼𝛼−𝜔𝜔𝑡𝑡), 𝜓𝜓(𝑝𝑝) = 0         - when exposed to longitudinal waves and 

𝜓𝜓(𝑝𝑝) = 𝜓𝜓0𝑒𝑒𝑖𝑖(𝛽𝛽𝛼𝛼−𝜔𝜔𝑡𝑡) 𝑐𝑐𝑔𝑔𝑐𝑐 𝛾𝛾0 , 𝜙𝜙(𝑝𝑝) = 0      - when exposed to shear waves. 
 

Here and are the magnitudes of the amplitudes; α and β are wave numbers, which must 
be complex numbers α = αR+iαI ; β=βR+i β I , αI< 0 and βI< 0 denote the damping 
coefficients; αR and βR  denote the wave numbers of longitudinal waves and shear waves, 
respectively. The considered process is harmonic; therefore, no initial conditions are set. 

2.2 Solution techniques 
Let's make the standard transformation in equation (1) as follows. We represent the 

displacement vector in the form: 
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�⃗�𝑢 𝑘𝑘 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝜑𝜑𝑘𝑘 + 𝑔𝑔𝑟𝑟𝑟𝑟(�⃗�𝜓 𝑘𝑘), 𝑔𝑔𝑑𝑑𝑑𝑑�⃗�𝜓 𝑘𝑘 = 0  (6) 
 

Here 𝜑𝜑𝑘𝑘and �⃗�𝜓 𝑘𝑘(0, 𝜓𝜓𝑘𝑘) are the longitudinal and transverse potentials, respectively. 
Substituting (6) into (1) and taking into account that the motion of particles has a steady 
character, following the principle of superposition, they can be taken into account 
separately when solving a static problem. Then we obtain, in the case of plane deformation, 
the following system of wave equations for potentials [17]: 
 

𝛻𝛻2𝜑𝜑𝑘𝑘 − ∫ [𝑅𝑅𝜆𝜆𝑘𝑘(𝑟𝑟 − 𝜏𝜏) + 2𝑅𝑅𝜇𝜇𝑘𝑘(𝑟𝑟 − 𝜏𝜏)]𝛻𝛻2𝜑𝜑𝑘𝑘𝑔𝑔𝜏𝜏𝑡𝑡
−∞ = 1

𝑐𝑐𝑝𝑝𝑝𝑝
2

𝜕𝜕2𝜑𝜑𝑝𝑝
𝜕𝜕𝑡𝑡2   (7) 

𝛻𝛻2𝜓𝜓𝑘𝑘 − ∫ 𝑅𝑅𝜇𝜇𝑘𝑘(t-𝜏𝜏) 𝛻𝛻2𝜓𝜓𝑘𝑘𝑔𝑔𝜏𝜏
𝑡𝑡

−∞
= 1

𝑐𝑐𝑠𝑠𝑘𝑘2
𝜕𝜕2𝜓𝜓𝑘𝑘
𝜕𝜕𝑟𝑟2  

 
where с𝑝𝑝𝑘𝑘

2 = (𝜆𝜆𝑘𝑘0 + 2𝜇𝜇𝑘𝑘0)/𝜌𝜌𝑘𝑘, с𝑠𝑠𝑘𝑘
2 = 𝜇𝜇𝑘𝑘0/𝜌𝜌𝑘𝑘, k =1,2. 

We seek the solution to equation (7) in the form: 

 
𝜙𝜙(𝑔𝑔, 𝜃𝜃, 𝑟𝑟) = ∑ 𝜙𝜙𝑘𝑘(𝑔𝑔, 𝜃𝜃)𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡;∞

𝑘𝑘=1 𝜓𝜓(𝑔𝑔, 𝜃𝜃, 𝑟𝑟) = ∑ 𝜓𝜓𝑘𝑘(𝑔𝑔, 𝜃𝜃)𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡∞
𝑘𝑘=1  (8) 

 
where𝜙𝜙к(𝑔𝑔, 𝜃𝜃) and  𝜓𝜓𝑘𝑘(𝑔𝑔, 𝜃𝜃) are real functions satisfying the equations 

 
𝛥𝛥𝜙𝜙𝑘𝑘 + 𝛼𝛼𝐿𝐿𝑘𝑘

2 𝜙𝜙𝑘𝑘 = 0; 𝛥𝛥𝜓𝜓к + 𝛽𝛽𝑀𝑀𝑘𝑘
2 𝜓𝜓к = 0  (9) 

𝛼𝛼𝐿𝐿𝑘𝑘
2 = 𝛼𝛼𝑘𝑘

2

1 − 𝐿𝐿к
, 𝛽𝛽𝑀𝑀𝑘𝑘

2 = 𝛽𝛽𝑘𝑘
2

1 − М𝑘𝑘
, 

𝐿𝐿𝑘𝑘 = ∫ [𝑅𝑅𝜆𝜆(𝜉𝜉) + 2𝑅𝑅𝜇𝜇(𝜉𝜉)] 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑑𝑑𝑖𝑖𝜉𝜉)𝑔𝑔𝜉𝜉,
∞

0
𝑀𝑀𝑘𝑘 = ∫ 𝑅𝑅𝜇𝜇(𝜉𝜉) 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑑𝑑𝑖𝑖𝜉𝜉)𝑔𝑔𝜉𝜉

∞

0
 

 
The study of the interaction and scattering of harmonic waves on a cylindrical body and 

a free surface is carried out similarly, given in [18]. The incident harmonic wave 𝜙𝜙(𝑝𝑝) first 
falls on the cylindrical shell, and then there is reflection or scattering of the wave: 
longitudinal 𝜙𝜙1

(𝑠𝑠)
 and transverse 𝜓𝜓1

(𝑠𝑠)
 Potentials 

 
𝛷𝛷1 = 𝜙𝜙(𝑝𝑝) + 𝜙𝜙1

(𝑠𝑠), 𝛹𝛹1 = 𝜓𝜓1
(𝑠𝑠)

   (10) 
 

The potentials of longitudinal and transverse waves (10) satisfy the wave equation (9) 
and boundary conditions (3) - (5). Then the excited wave (10) falls on the half-plane 
boundary and, as a result,  
 

𝛷𝛷 = 𝜙𝜙(𝑝𝑝)(𝑔𝑔, 𝜃𝜃, 𝑟𝑟) + ∑ 𝜙𝜙𝑛𝑛
(𝑠𝑠)(𝑔𝑔, 𝜃𝜃, 𝑟𝑟)𝑁𝑁

𝑛𝑛=1 ; 𝛹𝛹 = 𝜓𝜓1
(𝑠𝑠)(𝑔𝑔, 𝜃𝜃, 𝑟𝑟) + ∑ 𝜓𝜓𝑛𝑛

(𝑠𝑠)(𝑔𝑔, 𝜃𝜃, 𝑟𝑟)𝑁𝑁
𝑛𝑛=2   (11) 

 
where n is the number of scattered waves. Expression (11) satisfies boundary conditions 

(3) - (5) and wave equation (9). Formula (11) considers multiple scattering of waves in a 
viscoelastic medium from a circular shell. 

2.3 Incident and scattered harmonic waves  

A plane longitudinal wave with potential 𝜙𝜙(𝑝𝑝) falls on a cylindrical shell with radius R, 
the frequency 𝑖𝑖  and amplitude of the incident waves 𝜙𝜙0 in the form 
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𝛥𝛥𝜙𝜙𝑘𝑘 + 𝛼𝛼𝐿𝐿𝑘𝑘

2 𝜙𝜙𝑘𝑘 = 0; 𝛥𝛥𝜓𝜓к + 𝛽𝛽𝑀𝑀𝑘𝑘
2 𝜓𝜓к = 0  (9) 

𝛼𝛼𝐿𝐿𝑘𝑘
2 = 𝛼𝛼𝑘𝑘

2

1 − 𝐿𝐿к
, 𝛽𝛽𝑀𝑀𝑘𝑘

2 = 𝛽𝛽𝑘𝑘
2

1 − М𝑘𝑘
, 

𝐿𝐿𝑘𝑘 = ∫ [𝑅𝑅𝜆𝜆(𝜉𝜉) + 2𝑅𝑅𝜇𝜇(𝜉𝜉)] 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑑𝑑𝑖𝑖𝜉𝜉)𝑔𝑔𝜉𝜉,
∞

0
𝑀𝑀𝑘𝑘 = ∫ 𝑅𝑅𝜇𝜇(𝜉𝜉) 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑑𝑑𝑖𝑖𝜉𝜉)𝑔𝑔𝜉𝜉

∞

0
 

 
The study of the interaction and scattering of harmonic waves on a cylindrical body and 

a free surface is carried out similarly, given in [18]. The incident harmonic wave 𝜙𝜙(𝑝𝑝) first 
falls on the cylindrical shell, and then there is reflection or scattering of the wave: 
longitudinal 𝜙𝜙1

(𝑠𝑠)
 and transverse 𝜓𝜓1

(𝑠𝑠)
 Potentials 

 
𝛷𝛷1 = 𝜙𝜙(𝑝𝑝) + 𝜙𝜙1

(𝑠𝑠), 𝛹𝛹1 = 𝜓𝜓1
(𝑠𝑠)

   (10) 
 

The potentials of longitudinal and transverse waves (10) satisfy the wave equation (9) 
and boundary conditions (3) - (5). Then the excited wave (10) falls on the half-plane 
boundary and, as a result,  
 

𝛷𝛷 = 𝜙𝜙(𝑝𝑝)(𝑔𝑔, 𝜃𝜃, 𝑟𝑟) + ∑ 𝜙𝜙𝑛𝑛
(𝑠𝑠)(𝑔𝑔, 𝜃𝜃, 𝑟𝑟)𝑁𝑁

𝑛𝑛=1 ; 𝛹𝛹 = 𝜓𝜓1
(𝑠𝑠)(𝑔𝑔, 𝜃𝜃, 𝑟𝑟) + ∑ 𝜓𝜓𝑛𝑛

(𝑠𝑠)(𝑔𝑔, 𝜃𝜃, 𝑟𝑟)𝑁𝑁
𝑛𝑛=2   (11) 

 
where n is the number of scattered waves. Expression (11) satisfies boundary conditions 

(3) - (5) and wave equation (9). Formula (11) considers multiple scattering of waves in a 
viscoelastic medium from a circular shell. 

2.3 Incident and scattered harmonic waves  

A plane longitudinal wave with potential 𝜙𝜙(𝑝𝑝) falls on a cylindrical shell with radius R, 
the frequency 𝑖𝑖  and amplitude of the incident waves 𝜙𝜙0 in the form 

𝜙𝜙(𝑝𝑝) = 𝜙𝜙0𝑒𝑒𝑖𝑖(�⃗⃗�𝛼 ⋅𝑟𝑟 −𝜔𝜔𝜔𝜔), 𝜓𝜓(𝑝𝑝) = 0   (12) 
 

where 𝑟𝑟 = 𝑟𝑟(𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃0 𝑖𝑖 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃0 𝑗𝑗 ),   𝛼𝛼 = 𝛼𝛼(𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾0 𝑖𝑖 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝛾𝛾0 𝑗𝑗 ), 𝛼𝛼 = 𝜔𝜔/𝑐𝑐𝑝𝑝1, 𝜃𝜃0- the angle 
of the cylindrical shell in the main coordinate system, 𝛾𝛾0 is the angle of inclination of the 
falling loads, 𝑖𝑖 , 𝑗𝑗  are the unit vectors along the x and y axes, respectively (Figure 1). 
Further, the incident wave 𝜙𝜙(𝑝𝑝) in cylindrical coordinates has the form [19]. 

 
𝜙𝜙(𝑝𝑝) = 𝜙𝜙0𝑒𝑒𝑖𝑖𝛼𝛼1𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾0+𝑖𝑖𝜔𝜔𝜔𝜔 ∑ 𝐽𝐽𝑛𝑛∞

𝑛𝑛=−∞ (𝛼𝛼𝐿𝐿1𝑟𝑟)𝑒𝑒𝑖𝑖𝑛𝑛(𝜃𝜃+𝛾𝛾0).                           (13) 

  
The scattering of a wave of order m can be expressed in terms of the Hankel functions 

of the first kind of the nth order of the complex argument 

𝜙𝜙1
(𝑐𝑐𝑠𝑠) = ∑ [𝐴𝐴𝑛𝑛

𝑐𝑐𝑠𝑠Н𝑛𝑛
(1)(𝛼𝛼𝐿𝐿1𝑟𝑟) + �̄�𝐴𝑛𝑛

𝑐𝑐𝑠𝑠Н𝑛𝑛
(2)(𝛼𝛼𝐿𝐿1𝑟𝑟)] 𝑒𝑒𝑖𝑖𝑛𝑛(𝜃𝜃0−𝛾𝛾)−𝑖𝑖𝜔𝜔𝜔𝜔

∞

𝑛𝑛=−∞
, 

𝜓𝜓1
(𝑐𝑐𝑠𝑠) = ∑ [𝐵𝐵𝑛𝑛

𝑐𝑐𝑠𝑠Н𝑛𝑛
(1)(𝛽𝛽𝑀𝑀1𝑟𝑟) + �̄�𝐵𝑛𝑛

𝑐𝑐𝑠𝑠Н𝑛𝑛
(2)(𝛽𝛽𝑀𝑀1𝑟𝑟)] 𝑒𝑒𝑖𝑖𝑛𝑛(𝜃𝜃0−𝛾𝛾)−𝑖𝑖𝜔𝜔𝜔𝜔∞

𝑛𝑛=−∞ . .               (14) 

Here 𝐴𝐴𝑛𝑛
𝑐𝑐𝑠𝑠 and 𝐵𝐵𝑛𝑛

𝑐𝑐𝑠𝑠 are the complex scattering coefficients of order m, 𝐻𝐻𝑛𝑛
(1) are the 

Hankel functions of the first kind of the n-th order of the complex argument. Coefficients, 
𝐴𝐴𝑛𝑛

𝑐𝑐𝑠𝑠, �̅�𝐴𝑛𝑛
𝑐𝑐𝑠𝑠, 𝐵𝐵𝑛𝑛

𝑐𝑐𝑠𝑠, �̅�𝐵𝑛𝑛
𝑐𝑐𝑠𝑠 are determined from the boundary conditions, which in the considered 

case have the from: 
𝜎𝜎𝑟𝑟𝑟𝑟𝑠𝑠

(𝑘𝑘) = 𝜎𝜎𝑟𝑟𝑟𝑟𝑠𝑠
(𝑘𝑘+1), 𝜎𝜎𝑟𝑟𝜃𝜃𝑠𝑠

(𝑘𝑘) = 𝜎𝜎𝑟𝑟𝜃𝜃𝑠𝑠
(𝑘𝑘+1), 

 

𝑢𝑢𝑟𝑟𝑠𝑠
(𝑘𝑘) = 𝑢𝑢𝑟𝑟𝑠𝑠

(𝑘𝑘+1), 𝑢𝑢𝜃𝜃𝑠𝑠
(𝑘𝑘) = 𝑢𝑢𝜃𝜃𝑠𝑠

(𝑘𝑘+1).                                  (15)

 Similarly, for each incident and scattering harmonic wave, the radiation conditions (5) 

are satisfied. 

The solution to equation (10), for cylindrical shells, is expressed through the Hankel 

functions of the 1st and 2nd kind of the nth order: 

 

𝜙𝜙2
(𝑐𝑐) = ∑ [𝐶𝐶𝑛𝑛

𝑐𝑐𝑠𝑠Н𝑛𝑛
(1)(𝛼𝛼𝐿𝐿2𝑟𝑟) + 𝐷𝐷𝑛𝑛

𝑐𝑐𝑠𝑠Н𝑛𝑛
(2)(𝛼𝛼𝐿𝐿2𝑟𝑟)] 𝑒𝑒𝑖𝑖𝑛𝑛(𝜃𝜃0−𝛾𝛾)−𝑖𝑖𝜔𝜔𝜔𝜔

∞

𝑛𝑛=−∞
, 

𝜓𝜓2
(𝑐𝑐) = ∑ [𝐿𝐿𝑛𝑛

𝑐𝑐𝑠𝑠Н𝑛𝑛
(1)(𝛽𝛽𝑀𝑀2𝑟𝑟) + 𝑀𝑀𝑛𝑛

𝑐𝑐𝑠𝑠Н𝑛𝑛
(2)(𝛽𝛽𝑀𝑀2𝑟𝑟)] 𝑒𝑒𝑖𝑖𝑛𝑛(𝜃𝜃0−𝛾𝛾)−𝑖𝑖𝜔𝜔𝜔𝜔∞

𝑛𝑛=−∞ ,                     (16)

 
 

where, 𝐶𝐶𝑛𝑛
𝑐𝑐𝑠𝑠, 𝐷𝐷𝑛𝑛

𝑐𝑐𝑠𝑠, 𝐿𝐿𝑛𝑛
𝑐𝑐𝑠𝑠, 𝑀𝑀𝑛𝑛

𝑐𝑐𝑠𝑠 are the expansion coefficients, which are determined by 
the corresponding boundary conditions; 
𝐻𝐻𝑛𝑛

(1)(𝛼𝛼𝐿𝐿2𝑟𝑟), 𝐻𝐻𝑛𝑛
(2)(𝛼𝛼𝐿𝐿2𝑟𝑟), 𝐻𝐻𝑛𝑛

(1)(𝛽𝛽𝑀𝑀2𝑟𝑟) 𝑎𝑎𝑠𝑠𝑎𝑎 𝐻𝐻𝑛𝑛
(2)(𝛽𝛽𝑀𝑀2𝑟𝑟)  and is the Hankel function of the 1st 

and 2nd kind of the nth order, respectively. Solution (14) satisfies at infinity r→ ∞ the 
Sommerfeld radiation condition (5). For this, there must be 
 

А̄𝑛𝑛
𝑐𝑐𝑠𝑠=�̄�𝐵𝑛𝑛

𝑐𝑐𝑠𝑠 = 0 

 
The solution to equation (14) is represented as: 
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𝜙𝜙1
(𝑠𝑠𝑠𝑠) = ∑ [𝐴𝐴𝑛𝑛𝑠𝑠𝑠𝑠Н𝑛𝑛

(1)(𝛼𝛼𝐿𝐿1𝑟𝑟)] 𝑒𝑒𝑖𝑖𝑛𝑛(𝜃𝜃0−𝛾𝛾)−𝑖𝑖𝑖𝑖𝑖𝑖
∞

𝑛𝑛=−∞
, 

𝜓𝜓1
(𝑠𝑠𝑠𝑠) = ∑ [𝐵𝐵𝑛𝑛𝑠𝑠𝑠𝑠Н𝑛𝑛

(1)(𝛽𝛽𝑀𝑀1𝑟𝑟)] 𝑒𝑒𝑖𝑖𝑛𝑛(𝜃𝜃0−𝛾𝛾)−𝑖𝑖𝑖𝑖𝑖𝑖∞
𝑛𝑛=−∞ .                  (17) 

 
Thus, using (10) and (11), the potentials of longitudinal and transverse waves are 

determined. 

2.4 Determination of displacement and stress 

The total potential can be determined by superimposing the potentials of the incident and 
reflected waves (10) - (17). Hence it follows that voltages and displacements can easily be 
expressed in terms of displacement potentials 

 

𝑢𝑢𝑟𝑟𝑟𝑟 = 𝜕𝜕𝜙𝜙𝑟𝑟
𝜕𝜕𝑟𝑟 + 1

𝑟𝑟
𝜕𝜕𝜓𝜓𝑟𝑟
𝜕𝜕𝜕𝜕 ;𝑢𝑢𝜃𝜃𝑟𝑟 = 1

𝑟𝑟
𝜕𝜕𝜙𝜙𝑟𝑟
𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜓𝜓𝑟𝑟

𝜕𝜕𝑟𝑟 , 

𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜕𝜕𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝑟𝑟 ; 𝜀𝜀𝜃𝜃𝜃𝜃𝑟𝑟 = 1

𝑟𝑟
𝜕𝜕𝑢𝑢𝜃𝜃𝑟𝑟
𝜕𝜕𝜕𝜕 + 𝑢𝑢𝑟𝑟𝑟𝑟

𝑟𝑟 ; 𝜀𝜀𝑟𝑟𝜃𝜃𝑟𝑟 = 1
2 (1

𝑟𝑟
𝜕𝜕𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕 + 𝜕𝜕𝑢𝑢𝜃𝜃𝑟𝑟

𝜕𝜕𝑟𝑟 + 𝑢𝑢𝜃𝜃𝑟𝑟
𝑟𝑟 ), 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 = �̃�𝜆𝑟𝑟𝛻𝛻2𝜙𝜙𝑟𝑟 + 2�̃�𝜇𝑟𝑟 [
𝜕𝜕2𝜙𝜙𝑟𝑟
𝜕𝜕𝑟𝑟2 + 𝜕𝜕

𝜕𝜕𝑟𝑟 (
1
𝑟𝑟
𝜕𝜕𝜙𝜙𝑟𝑟
𝜕𝜕𝜕𝜕 )] , 

𝜎𝜎𝜃𝜃𝜃𝜃𝑟𝑟 = �̃�𝜆𝑟𝑟𝛻𝛻2𝜙𝜙𝑟𝑟 + 2�̃�𝜇𝑟𝑟 [[
1
𝑟𝑟 (𝜕𝜕𝜙𝜙𝑟𝑟

𝜕𝜕𝑟𝑟 + 1
𝑟𝑟
𝜕𝜕2𝜙𝜙𝑟𝑟
𝜕𝜕𝜕𝜕2 ) + 1

𝑟𝑟 (1
𝑟𝑟
𝜕𝜕𝜓𝜓𝑟𝑟
𝜕𝜕𝜕𝜕 − 𝜕𝜕2𝜓𝜓𝑟𝑟

𝜕𝜕𝑟𝑟𝜕𝜕𝜕𝜕)] , 

𝜎𝜎𝑧𝑧𝑧𝑧 = �̃�𝜆𝑟𝑟𝛻𝛻2𝜙𝜙𝑟𝑟;𝜎𝜎𝑟𝑟𝜃𝜃𝑟𝑟 = 2�̃�𝜇𝑟𝑟(1𝑟𝑟
𝜕𝜕2𝜙𝜙𝑘𝑘
𝜕𝜕𝜃𝜃𝜕𝜕𝑟𝑟 −

1
𝑟𝑟2

𝜕𝜕𝜙𝜙𝑘𝑘
𝜕𝜕𝜃𝜃 ).                                                            (18) 

 

where 𝜀𝜀𝑟𝑟𝑟𝑟 , 𝜀𝜀𝑟𝑟𝜃𝜃, 𝜀𝜀𝜃𝜃𝜃𝜃 are the elements of the strain tensor; -𝜎𝜎𝑟𝑟𝑟𝑟,𝜎𝜎𝑟𝑟𝜃𝜃,𝜎𝜎𝜃𝜃𝜃𝜃,𝜎𝜎𝑧𝑧𝑧𝑧 elements of 
the stress tensor. 

To determine arbitrary constants, А𝑛𝑛𝑠𝑠𝑠𝑠,𝐵𝐵𝑛𝑛𝑠𝑠𝑠𝑠,𝐶𝐶𝑛𝑛𝑠𝑠𝑠𝑠, 𝐷𝐷𝑛𝑛𝑠𝑠𝑠𝑠 ,𝐿𝐿𝑛𝑛𝑠𝑠𝑠𝑠, 𝑀𝑀𝑛𝑛
𝑠𝑠𝑠𝑠 - used from the 

boundary conditions (15) and the condition is free from forces on the surface of the half-
plane. Then we obtain systems of algebraic equations with complex coefficients with 6m 
unknown quantities and equations. The coefficients are expressed in terms of the special 
Bessel and Hankel functions. To solve a system of algebraic equations, the Gauss method is 
used to select the main element. The analytical solution was obtained in infinite series, the 
convergence of which was investigated numerically [20]. The numerical results were 
obtained using the MATLAB software package. 

3 Results and Discussion 
Let us consider the problem of wave scattering by an elastic half-plane from circular shells. 
We assume that the tunnel structure is a steel shell with a radius, 𝑅𝑅1 = 1.75,𝑅𝑅2 = 2.0,ℎ =
0.25,𝜕𝜕0 = 00, H/R=2.0, m=2.   In the calculations, we used the Koltunov-Rzhanitsyn three-
parameter relaxation kernel:  

𝑅𝑅(𝑡𝑡) = 𝐴𝐴𝑒𝑒−𝛽𝛽𝑖𝑖/𝑡𝑡1−𝛼𝛼 with the parameters: 𝐴𝐴 = 0,048;𝛽𝛽 = 0.05;𝛼𝛼 = 0.1 
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𝜙𝜙1
(𝑠𝑠𝑠𝑠) = ∑ [𝐴𝐴𝑛𝑛𝑠𝑠𝑠𝑠Н𝑛𝑛

(1)(𝛼𝛼𝐿𝐿1𝑟𝑟)] 𝑒𝑒𝑖𝑖𝑛𝑛(𝜃𝜃0−𝛾𝛾)−𝑖𝑖𝑖𝑖𝑖𝑖
∞

𝑛𝑛=−∞
, 

𝜓𝜓1
(𝑠𝑠𝑠𝑠) = ∑ [𝐵𝐵𝑛𝑛𝑠𝑠𝑠𝑠Н𝑛𝑛

(1)(𝛽𝛽𝑀𝑀1𝑟𝑟)] 𝑒𝑒𝑖𝑖𝑛𝑛(𝜃𝜃0−𝛾𝛾)−𝑖𝑖𝑖𝑖𝑖𝑖∞
𝑛𝑛=−∞ .                  (17) 

 
Thus, using (10) and (11), the potentials of longitudinal and transverse waves are 

determined. 

2.4 Determination of displacement and stress 

The total potential can be determined by superimposing the potentials of the incident and 
reflected waves (10) - (17). Hence it follows that voltages and displacements can easily be 
expressed in terms of displacement potentials 

 

𝑢𝑢𝑟𝑟𝑟𝑟 = 𝜕𝜕𝜙𝜙𝑟𝑟
𝜕𝜕𝑟𝑟 + 1

𝑟𝑟
𝜕𝜕𝜓𝜓𝑟𝑟
𝜕𝜕𝜕𝜕 ;𝑢𝑢𝜃𝜃𝑟𝑟 = 1

𝑟𝑟
𝜕𝜕𝜙𝜙𝑟𝑟
𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜓𝜓𝑟𝑟

𝜕𝜕𝑟𝑟 , 

𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜕𝜕𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝑟𝑟 ; 𝜀𝜀𝜃𝜃𝜃𝜃𝑟𝑟 = 1

𝑟𝑟
𝜕𝜕𝑢𝑢𝜃𝜃𝑟𝑟
𝜕𝜕𝜕𝜕 + 𝑢𝑢𝑟𝑟𝑟𝑟

𝑟𝑟 ; 𝜀𝜀𝑟𝑟𝜃𝜃𝑟𝑟 = 1
2 (1

𝑟𝑟
𝜕𝜕𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕 + 𝜕𝜕𝑢𝑢𝜃𝜃𝑟𝑟

𝜕𝜕𝑟𝑟 + 𝑢𝑢𝜃𝜃𝑟𝑟
𝑟𝑟 ), 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 = �̃�𝜆𝑟𝑟𝛻𝛻2𝜙𝜙𝑟𝑟 + 2�̃�𝜇𝑟𝑟 [
𝜕𝜕2𝜙𝜙𝑟𝑟
𝜕𝜕𝑟𝑟2 + 𝜕𝜕

𝜕𝜕𝑟𝑟 (
1
𝑟𝑟
𝜕𝜕𝜙𝜙𝑟𝑟
𝜕𝜕𝜕𝜕 )] , 

𝜎𝜎𝜃𝜃𝜃𝜃𝑟𝑟 = �̃�𝜆𝑟𝑟𝛻𝛻2𝜙𝜙𝑟𝑟 + 2�̃�𝜇𝑟𝑟 [[
1
𝑟𝑟 (𝜕𝜕𝜙𝜙𝑟𝑟

𝜕𝜕𝑟𝑟 + 1
𝑟𝑟
𝜕𝜕2𝜙𝜙𝑟𝑟
𝜕𝜕𝜕𝜕2 ) + 1

𝑟𝑟 (1
𝑟𝑟
𝜕𝜕𝜓𝜓𝑟𝑟
𝜕𝜕𝜕𝜕 − 𝜕𝜕2𝜓𝜓𝑟𝑟

𝜕𝜕𝑟𝑟𝜕𝜕𝜕𝜕)] , 

𝜎𝜎𝑧𝑧𝑧𝑧 = �̃�𝜆𝑟𝑟𝛻𝛻2𝜙𝜙𝑟𝑟;𝜎𝜎𝑟𝑟𝜃𝜃𝑟𝑟 = 2�̃�𝜇𝑟𝑟(1𝑟𝑟
𝜕𝜕2𝜙𝜙𝑘𝑘
𝜕𝜕𝜃𝜃𝜕𝜕𝑟𝑟 −

1
𝑟𝑟2

𝜕𝜕𝜙𝜙𝑘𝑘
𝜕𝜕𝜃𝜃 ).                                                            (18) 

 

where 𝜀𝜀𝑟𝑟𝑟𝑟 , 𝜀𝜀𝑟𝑟𝜃𝜃, 𝜀𝜀𝜃𝜃𝜃𝜃 are the elements of the strain tensor; -𝜎𝜎𝑟𝑟𝑟𝑟,𝜎𝜎𝑟𝑟𝜃𝜃,𝜎𝜎𝜃𝜃𝜃𝜃,𝜎𝜎𝑧𝑧𝑧𝑧 elements of 
the stress tensor. 

To determine arbitrary constants, А𝑛𝑛𝑠𝑠𝑠𝑠,𝐵𝐵𝑛𝑛𝑠𝑠𝑠𝑠,𝐶𝐶𝑛𝑛𝑠𝑠𝑠𝑠, 𝐷𝐷𝑛𝑛𝑠𝑠𝑠𝑠 ,𝐿𝐿𝑛𝑛𝑠𝑠𝑠𝑠, 𝑀𝑀𝑛𝑛
𝑠𝑠𝑠𝑠 - used from the 

boundary conditions (15) and the condition is free from forces on the surface of the half-
plane. Then we obtain systems of algebraic equations with complex coefficients with 6m 
unknown quantities and equations. The coefficients are expressed in terms of the special 
Bessel and Hankel functions. To solve a system of algebraic equations, the Gauss method is 
used to select the main element. The analytical solution was obtained in infinite series, the 
convergence of which was investigated numerically [20]. The numerical results were 
obtained using the MATLAB software package. 

3 Results and Discussion 
Let us consider the problem of wave scattering by an elastic half-plane from circular shells. 
We assume that the tunnel structure is a steel shell with a radius, 𝑅𝑅1 = 1.75,𝑅𝑅2 = 2.0,ℎ =
0.25,𝜕𝜕0 = 00, H/R=2.0, m=2.   In the calculations, we used the Koltunov-Rzhanitsyn three-
parameter relaxation kernel:  

𝑅𝑅(𝑡𝑡) = 𝐴𝐴𝑒𝑒−𝛽𝛽𝑖𝑖/𝑡𝑡1−𝛼𝛼 with the parameters: 𝐴𝐴 = 0,048;𝛽𝛽 = 0.05;𝛼𝛼 = 0.1 

 
Fig.2. Diagrams of shell contour stress at different frequencies: 1. ω=20Hz; 2. ω=40Hz, 3. ω=80Hz 

 
Fig.3. Diagrams of contour displacement of the shell at different frequencies: 1. ω=20Hz; 2. ω=40Hz, 
3. ω=80Hz 

The reliability of the research results obtained is confirmed by good agreement with 
theoretical and experimental results and those obtained by other authors. The calculation 
results are shown in Figure 2 and Figure 3 when exposed to shear waves. The maximum 
loop stresses in the shell are obtained at frequency values 
 

𝜔𝜔 ∈ [19.30]𝐻𝐻𝐻𝐻 

4 Conclusions 
Regularities of the influence of transverse loads from the action of seismic waves directed 
normally to the longitudinal axis of the circular tunnel on the stress-strain states of the 
tunnel are revealed. Dependences of stresses in the tunnel on its diameter, wall thickness, 
earthquake intensity, rheological properties of the soil have been established. With an 
increase in the intensity of an earthquake and an increase in the diameter of the tunnel, the 
voltage changes (increases) as follows: for shells with a diameter of 1000 mm - by 1,15 ... 
1,25 times, for shells with a diameter of 1500 mm - by 1,20 ... 1,35 times, for pipes with a 
diameter 1700 mm – 1,55 ... 1,70 times. Proposals have been prepared for improving the 
regulatory documents when calculating the shell tunnel in seismic areas, taking into account 
the transverse seismic effect of the wave along the normal to the longitudinal axis of the 
pipeline. 
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