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Abstract. In this paper, schemes for constructing solutions to boundary 
value problems for static calculation of flexible circular plates with the 
nonlinear theory of Lyava and Volmyr are presented. From the equations 
of the equilibrium system of the plates, given in curvilinear coordinates, 
the system of equilibrium equations for flexible round plates is obtained. 
Substituting the expressions for the efforts and shearing forces and 
introducing dimensionless quantities, we obtain a system of quasilinear 
quantities in displacements. 
To develop an automated system for static calculation of flexible round 
plates, we use central finite-difference schemes that approximate 
derivatives with second-order accuracy, we obtain a system of quasilinear 
algebraic equations. To test the constructed automatic system for static 
calculation, the difference equations are reduced to vector form. An 
implicit iterative process combined with the Gaussian elimination method 
is applied to the solution of the system of equations. When calculating 
iterative processes, it continues until the above conditions are met. After 
determining the required functions by the finite difference method, we 
calculate the calculated values. Using the obtained numerical results, we 
will construct their graphs. 

1 Introduction 

From the literature reviewed, it can be seen that most of the problems on flexible circular 
plates are solved in the Fepple-Karmana formulation, which is a special case of Lyava [1]. 
The constructed algorithms are not economical about their implementation on the 
computer. Therefore, the construction of an automated system for the complete calculation 
of flexible round plates with a given degree of accuracy becomes an urgent issue. 

The problem of creating an automated system was first posed in the monograph by V.K. 
Kabulov [2]. The algorithmization problem is solved in four stages. At the first stage, 
depending on the geometric characteristics of the object and the physical properties of the 
material, the design scheme of this model is selected. The second stage is associated with 
the derivation of the original differential equations in the corresponding boundary and 
initial conditions. The choice of a computational algorithm and the numerical solution of 
the obtained solutions constitutes the third stage of research. The fourth stage ends with the 
analysis of the obtained numerical results described by the stress-strain state of the structure 
under consideration. 
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In particular, in [9], the algorithms for calculating specific structures - beams, plates and 
conical shells - are considered. 

This work in the formulation of Love formulated boundary value problems of flexible 
circular plates in displacements. The corresponding system of two nonlinear partial 
differential equations is reduced to a system of two quasilinear differential equations. 

The solution of a system of difference equations with different boundary conditions is 
reduced to the solution of systems of quasilinear equations. 

2 Methods 

The choice of a computational algorithm and the numerical solution of the formulated 
boundary value problems constitute the main stage of algorithmization 

This paper addresses the following issues: 
1) Construction of a unified computational scheme for solving boundary value problems 

of static calculation of flexible round plates using the nonlinear Lyava theory; 
2) Development of an automated system for static calculation of flexible round plates; 
3) Approbation of the built automated system; 
4) Study of the nature of the convergence of the applied numerical methods. 

Let us use the well-known equations of equilibrium of the plate in an arbitrary curvilinear 
coordinate system [1, 3, 18, 19]. 
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where:  ,,  are curvilinear coordinates; BA,  are the coefficients of the first 

coordinate form; 121 ,, STT  and 2S  are components of membrane forces; 21,QQ  are 

shearing forces; 212121 ,,,,, ppqqrr  are surface curvature; ZYX ,, are volumetric 
forces. 

Equations of equilibrium of flexible circular plates under the action of axisymmetric 
loads are derived from this system. 
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For round plates, this is 
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Substituting expressions for efforts (2) and for shearing forces (3) [3,8,13] into (1) and 

introducing the following without dimensional quantities [9, 10]. 
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System (7) is solved at 0 1r   - for solid and at 0 1r r   - for an annular circular 

plate and with the following boundary conditions 
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Equations of equilibrium of flexible round plates (7) for the given boundary conditions 
can also be solved using the method of meshes [4, 5, 14]. 

Let's introduce a grid: 
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,

r r ih(1-r ) annular circular plate (r 1).
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Using the central difference formulas that approximate the derivatives with a second 
order accuracy [4,6], instead of equations (7), we obtain the following system of quasilinear 
algebraic equations [7, 9]: 
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Let us consider some different boundary conditions for flexible circular plates under 

uniformly distributed loads. 
For a solid round plate hinged on the contour 
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We get from the first, fourth and fifth (9)  
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To solve the system of quasilinear algebraic equations (14), an implicit iterative process 

is applied in combination with the Gaussian elimination method, whose equations have the 
following form [4, 6]: 
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The iterative process in calculating (19) continues until the condition 
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To solve the system of quasilinear algebraic equations (14), an implicit iterative process 

is applied in combination with the Gaussian elimination method, whose equations have the 
following form [4, 6]: 
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3 Results and Discussion 

A solid round plate hinged along the contour. The calculation was carried out for the 
following values of geometric and mechanical characteristics: 

 2 440; 12 1 12.8
a q
h E

         and 38.4. 510 , 0,3.    

The calculations were performed at 10, 20, 40N  . The main calculation results are 

summarized in the graph (1.1, 1.2). W  (Figure 1), 1 2
1 1,   , 1 2

2 2,   (Figure 1 c, d, e, f), 

1 2,M M  (Figure 2 c, d), 1 2,T T  (Figure 1 and 2) reach their extreme values in the center 

plates 2
1 ,Q  (Figure 2 e) - on the contour, and U  (Figure 1) at 0,5r  . 

 

 

Fig. 1. a) u  is radial displacement, b) w  is deflection, с), d) 1 2
1 1,   are radial total stresses, 

f) 1 2
2 2,   are tangential total stresses. 
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Fig. 2. a), b) 1 2,T T   are radial and tangential force, с), d) 1 2,M M  are bending moments,  e) 

Q   is cutting force. 

The difference in the values of the deflection and moment of the plates in the nonlinear 
formulation of the problem with respect to the linear and total stresses relative to the 
bending in the linear formulation in the center is, respectively, at 

12.8 60;68.31%k    and at 38.4 170;381%k   . At 12.8; 38.4, it changes 
sign, corresponding, in points 0.885; 0.844r  . The table with 

640, 20, 10 , 0,3N       shows the deflection values (0), (0)Hw w  - 

according to Lyava's theory, (0)Iw  - according to Kornishin, (0)IIw  - according to 
Ueyav. 
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according to Lyava's theory, (0)Iw  - according to Kornishin, (0)IIw  - according to 
Ueyav. 

Table 1. 

  (0)w  (0)Hw   (0)Iw  (0)IIw  
24.9 

56.0196 
83.9748 
125.9076 
189.916 

0.38918 
0.875585 
1.31242 
1.96790 
2.96806 

0.362133 
0.692801 
0.904869 
1.142414 
1.407727 

0.363100 
0.694 
0.906 
1.150 
1.41 

0.362871 
0.693743 
0.90582 
1.14863 
1.40914 

 
It can be seen from the table that the value of the deflection of the plates (0)Hw  - 

according to Lyava's theory, (0)Iw -Kornishin, (0)IIw - according to Ueyav coincide in 
two decimal places, and according to the other signs, according to Lyava's theory, the 
results are more underestimated than according to the theory of Kornishin and Ueyav. 

4 Conclusions 

The main results of the work are summarized as follows: 
1. A unified computational scheme for solving boundary value problems of static 

calculation of flexible round plates by the method of finite differences has been 
constructed. In the formulation of boundary value problems in displacements, the nonlinear 
theory of Volmira was used [3]. 

2. An automated system for complete static calculation of flexible circular plates with 
arbitrary boundary conditions has been built. The system is based on standard education 
programs and solutions to large systems of nonlinear algebraic equations. Calculating the 
calculated values and printing the results. 

3. The character of convergence of the finite difference method and implicit iterative 
processes of solving systems of nonlinear algebraic equations depending on the intensity of 
the external load was investigated. It was found that the deflections obtained by M.S. 
Kornishen [8] turned out to be overestimated. The convergence rate of the iterative process 
does not depend on the number of nodes. 

4. It was found that with an increase in the degree of nonlinearity of the problem, the 
amplitude of the calculated bending values decreases. 
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