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Abstract. It is known that the application of the vector operation rot to the 
equations of hydrodynamics leads to the Helmholtz-Friedman equation for 
a vortex. A dispersed mixture, tensor transformations are used, in a certain 
sense generalizing the vector operation rot, which gives more than one, a 
couple of equations. One of them describes the transfer of vorticity is the 
well-known Helmholtz-Friedman equation. The second equation was 
obtained for the first time, and it describes the transfer of the strain rate 
tensor. Any tensor decomposes into symmetric and antisymmetric parts. 
By definition, the symmetric part of the tensor U is the strain rate tensor. 
The antisymmetric part of U is a tensor whose components are related in a 
known manner to the pseudovector angular velocity. 

1 Introduction 

The objects of research are stationary and non-stationary flows of two-phase media under 
various conditions. The subject of research is the regularities of changes in the 
hydrodynamic parameters of dispersed mixtures in watercourses and their nodes. 

Hydraulic structures worldwide are subject to various types of vibration damage caused 
by water hammers in water supply and discharge pipelines of systems. Finding a technique 
for reducing water hammer caused by cavitation and flow pulsation is one of the urgent 
problems. Therefore, the development of a safety methodology and the development of 
numerical forecasting methods in hydraulic structures and in water discharge systems of 
industrial complexes have a special character in operation. In this direction, in highly 
developed countries such as the USA, France, Italy, Brazil, South Korea, Russia, and other 
countries, intensive work is being carried out to create projects with a minimum appearance 
of a water hammer in water discharge and water supply pipelines. Therefore, the 
preservation of hydraulic structures, engineering communications from water hammers, and 
deformation of pipelines and their safe operation is one of today's main and difficult tasks 
and attracts special attention. 
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Particular attention in the world is paid to the scientific basis of methods for reliable 
forecasting of water hammer in water outlet hydraulic structures and utilities, which affects 
pulsation and the need to develop an effective technology. The development of effective 
technology is based on the creation of pressure control in pipelines compared to the 
pressures of para-fluid flows, which is why the conditions of cavitation. In the developed 
countries of the world, in the design and construction of high-pressure hydroelectric 
facilities, special attention is paid to the safety of these structures. The safety of structures is 
carried out by eliminating high speeds in the places of local resistances of the outlet pipes. 
At these special points, cavitation and flow pulsation are affected, which leads to the 
deformation of the pipes of the outlet structures. The development of methods for assessing 
the reliability of the use of structures and technology improvement is of great importance in 
operation. 

2 Methods 

The article uses mathematical modeling of flows of multiphase continua, mathematical 
physics, computational and full-scale experiments. Taking into account the interaction of 
dispersed mixtures with variable and constant concentrations, mass transfer, and 
interactions of the phases of the mixture in the development of approximate analytical 
methods for solving problems, and their implementation, allow us to reveal the patterns of 
movement in pipes, canals, and reservoirs. 

It is known that the application of the vector operation rot to the equations of 
hydrodynamics leads to the Helmholtz-Friedman equation for a vortex. In this paper, tensor 
transformations are applied to the equations of a dispersed mixture, in a certain sense 
generalizing the vector operation rot, which gives more than one, a couple of equations. 
One of them describes the transfer of vorticity - this is the famous Helmholtz-Friedman 
equation. The second equation was obtained for the first time, and it describes the transfer 
of the strain rate tensor. 

Thanks to the equation for the strain rate tensor, a dispersed incompressible liquid can 
be described by a closed system of a dynamic type, containing only ordinary time 
derivatives of the phase coordinates of a liquid particle. The phase coordinates of such a 
particle are understood as the components of its position vectors  3,2,1 ixr i , speed 

 1, 2, 3u u ii  , angular rate of baptism  1, 2, 3
2

u
rot ii    , and the strain rate 

tensor  , 1, 2, 3s s i jij

  . This description of a liquid is essentially Liouville. It provides 

a convenient basis, for example, for extending the statistical particle method to turbulence 
problems. Many scientists have worked on this topic [1-20]. Perhaps such a description will 
be useful for the kinetic theory of turbulence. 

T1. The equations for the conservation of momentum of a dispersed barotropic liquid in 
an external field with potential P are written in the following form [2-4] (summation is 
assumed over the breaking indices). 

 

0, , 1, 2, 3
1

u ui iu П P ikt x xk




  
     

  
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Here the pressure function 
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Differentiating (1) with respect to, we obtain the equations for the derivatives 
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Suppose we use the concept of the total derivative with respect to time t and the notation 

a: b for the dyadic multiplication of vectors a and b. In that case, the last tensor equation 
can be rewritten in the following non-index form: 
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Any tensor, including U and the left-hand side of (2), decomposes into symmetric and 

antisymmetric parts. The symmetric part of the tensor U by definition 
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The antisymmetric part of U is the tensor  
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whose components are related in a known manner to the pseudovector  .
,

2

rotu
   how 

exactly 
 

.
. . . . . . . .

0, , , .11 22 12 31 2333 21 3 13 2 32 1ф ф ф ф ф ф ф ф ф                
 

It is not hard to see that  
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Where the first expression in brackets is the symmetric part of the tensor 2U , and the 
second is the antisymmetric part 2U , equating to zero the symmetric part of the tensor on 
the left side of (2), taking into account (5), we obtain the equation for the strain rate tensor 


S . 

2 2 ( : ) 0,
d s

s ф
dt



  
         (6) 

 
Equating the antisymmetric part (2) to zero will give 
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Equation (7) is the Helmholtz-Friedman equations in tensor notation. Indeed, since it is 

antisymmetric, it is equivalent to three independent equations of the following 
pseudovector equation: 
 

0.
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dt
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Obviously .





 divuSSS iip  and, moreover, the identity  . .S u 


   [2]. Thus, 

equation (8) is reduced to the form  . . 0.
d

u divu
dt


      Coinciding with the usual 

vector form of the Helmholtz-Friedmann uranium. 0,S Sp
 
 In the case of an 

incompressible fluid and (8) implies the Helmholtz equation in the following well-known 
form [2]: 

 

.
d

S
dt





      (9) 

 
In conclusion of this paragraph, we note that differentiating the equation of motion (1) 

and separating the antisymmetric part from the obtained tensor equation (2) is equivalent to 
the direct application of the vector operation curl to (1), as is usually done to obtain the 
vorticity equation. Transformations in tensor form allow us to extract from the equation of 
motion (1) the equation for the tensor that is paired to the Helmholtz-Friedman equation



S  
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Se  - invariant with respect to transformations of the coordinate 

system. 
Consider a flow in an unbounded simply connected region and such that an absolutely 

integrable function, ;),(  drrte  this takes place, for example, if outside a sphere 

of a certain radius 0R  fluid flow is fairly well approximated by homogeneous or shear flow. 
Then solution (10) can be represented by the volume potential 
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Expression (11) allows calculating the tensor     ,:: P   included in 

uranium (1.6) for 

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Wherein E  is the unit tensor, and the term with - function takes into account the 

nature of the singularity at the point 0R  second derivatives of functions
R
1

. Formula 

(12) can be obtained by methods of the theory of generalized functions [4] and is a 
generalization of the well-known identity 
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its application allows you to make an operation   :  under the integral sign (11). 

Calculating in this way   ,: P  substituting the result into (1, 6) and using the 

representation 


ф  as ,. 2Еф  
 

 we finally get that 
 

2
2 2

'
2

5

1 1:
3 3

3 1:
4 3

d S S S E E F
dt

eF R R R E dR
R

  




               

    
 

   (13) 

 
Equation (13), together with the Helmholtz equation (9), determines the evolution of the 

"internal" phase coordinates 


 and 


S  liquid particle and, consequently, the tensor 
invariant c, which can be interpreted as a scalar characteristic of the proper motion of a 
liquid particle (deformation and rotation). Transfer of a liquid dispersed particle as a whole 
in physical space 3,2,1ixi  is determined by uranium (1), in which 
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And so, to the Euler equations with incompressibility conditions, there corresponds a 

closed dynamical system of equations of the form 
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dt
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In which the vector f  and tensor F  are integral transformations of the function

  ., 2
2




 Srte  Incompressibility condition .0divu  contained in the equations for  



S  As you read it: .0


SS
dt
d

p  t. e .0


SSdivu p     always, if that's the case at the 

beginning of time. 
The system (14) allows you to present the dispersal mixture (liquid) as particle 

multipliers. Power f  determining the movement of particles in physical space is long 
acting, such as coulomb forces or gravitational forces. Thus, the dispersive particles that 
make up the solid environment of an incompressible dispersant fluid move in a self-agreed 
"charge" density е . The possibility of such an interpretation of the movement of an 
incompressible liquid in the physical space was previously indicated in the work of [5] 
based on the analogy of Euler's equations and Vlahos's kinetic uranium for ions in a self-
agreed field with potential P . 
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"charge" density е . The possibility of such an interpretation of the movement of an 
incompressible liquid in the physical space was previously indicated in the work of [5] 
based on the analogy of Euler's equations and Vlahos's kinetic uranium for ions in a self-
agreed field with potential P . 

The systems' own movement of the dispersal particle with fluid particles (dispersion and 
deformation) is pollinated by the second and third equations of the system (14). Helmholtz's 
equation reflects the law of preserving the moment of movement of a liquid particle 
(change in the shape of the body and therefore its moment of inertia leads to a 
corresponding change in the rate of influence of this body). 

4 Conclusions 

The equation obtained in this paper links the evolution of the "shape" of a liquid particle set 
by the components of the tensor 

S  with the condition of insimaceability and the influence 
of the following forces. These are, first, the forces of inertia that act on the elements of the 
particles; Second, strength F , has a tensor character and describes the influence of 
surrounding particles on the components of the tensor 

S  It is important that the latter is a 

short-acting force, falling as a 3R  when R . 
Thus, the dynamic system (14) allows interpreting liquid as a system of interacting 

particles. This reveals the re-activation of the statistical particle method [2] to 
hydrodynamic problems and the simulation of the turbulent transport. It is known that in the 
dynamics of rarefied gases, the static method of particles turned out to be one of the most 
effective methods of numerical modeling of complex tasks [6]. It is possible that the 
dynamic system will also be useful for theoretical research of the mechanisms of 
hydrodynamic instability and the development of turbulence. 
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