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Abstract. The longitudinal vibration of a cylindrical rod has been studied 
in an elastic medium from the action of axial harmonic forces in a state of 
compression tension. The consideration took into account the damping of 
vibration of the rod according to the theory of E.S. Sorokin. Taking into 
account, internal friction made it possible to approach the real state of the 
rod as a source of wave radiation. The amplitude-frequency characteristic 
of the structure is built, taking into account changes in the parameters of 
the environment and the rod. The possibilities of the emergence of the 
resonance state of the rod are established. At the same time, cases were 
considered with and without inelastic properties of the rod material. The 
analysis of the influence of the properties of the environment and the rod 
on the amplitude of the displacement of the latter is carried out.  

1 Introduction 

Wave problems are relevant for underground structures, so transverse vibrations of an 
underground cylindrical structure and vibrations of an elastic half-space with a cylindrical 
cavity under the action of Rayleigh waves are considered in [1, 2], and the vibrations of a 
hard disk in elastic space are studied in [3].  

To reduce the movement of structures, dynamic vibration dampers are used. The 
possibility of damping vibrations of underground pipelines from the action of Rayleigh 
waves using a single-mass damper and damping of vibrations of an underground structure 
using a three-mass damper is considered in [4, 5]. 

In [6], an assessment was made of the stress-strain state of earth dams, taking into 
account the nonlinear deformation of the material and large deformations, and in [7], an 
assessment of the dynamic behavior of the "structure - foundation" system was carried out 
taking into account the wave energy removal. In works [8, 9, 10, 11], dynamic problems for 
the "structure-soil" system are considered. Nonlinear vibrations of an axisymmetric body 
under the action of impulse loads, forced axisymmetric vibrations of a viscoelastic 
cylindrical shell, natural vibrations of structurally inhomogeneous multiply connected shell 
structures with viscoelastic elements are considered [12, 13, 14]. The method of 
compensating loads applied to the problems of equilibrium, vibrations and stability of 
plates and membranes is presented in [15]. 
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Taking into account inelastic properties in dynamic problems allows one to study the 
real behavior of the system under consideration. Oscillations of mechanical systems taking 
into account the imperfect elasticity of the material and the effect of viscosity on the 
propagation of stress waves in elastic bodies under dynamic loads are considered in [16, 
17], and in [18, 19], the method of taking into account the inelastic resistance of materials 
when calculating structures for vibrations is studied. 

In [20], the dynamic interaction of an embedded cylindrical rod under the action of axial 
harmonic forces was considered. 

2 Methods  

Consider the longitudinal vibrations of an extended cylindrical rod located in an elastic 
space from the action of axial harmonic forces. 

The differential equation of motion of the rod has the form 
 

𝐸𝐸∗𝐹𝐹 𝑑𝑑2𝑢𝑢𝑝𝑝
𝑑𝑑𝑧𝑧2

+ 2𝜋𝜋𝜋𝜋𝜏𝜏𝑟𝑟𝑟𝑟 − 𝜌𝜌𝜌𝜌 𝑑𝑑2𝑢𝑢𝑝𝑝
𝑑𝑑𝑡𝑡2

= − 2𝐹𝐹0
𝐿𝐿
∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑚𝑚𝑧𝑧𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖,∞
𝑚𝑚=1        (1) 

 
where, 𝑢𝑢𝑝𝑝(𝑧𝑧, 𝑡𝑡) is longitudinal movement of the rod; 

𝐸𝐸∗ is complex Young′s module  𝐸𝐸∗ = 𝐸𝐸0(1 + 𝑖𝑖𝛿𝛿); 
𝛿𝛿 is parameter that takes into account attenuation in the bar; 
 F, a, 𝜌𝜌 is cross-sectional area and radius, bar specific gravity;  
 𝜏𝜏𝑟𝑟𝑟𝑟 is shear stress of the medium at the line of contact with the rod.  

 

 
Fig. 1. Design scheme of an underground structure 

To solve the problem, we use the results of [20] and omitting intermediate calculations; 
we present the expression for the longitudinal displacement of the rod in the form 
 

𝑢𝑢𝑝𝑝 = ∑
2𝐹𝐹0𝑎𝑎
𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑚𝑚𝑧𝑧𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

(2𝑚𝑚−1)2(1+𝑖𝑖𝑖𝑖)−𝛼𝛼2{1−
2𝛾𝛾𝑝𝑝𝑝𝑝

𝛺𝛺[𝛾𝛾𝑠𝑠𝑠𝑠2 +(2𝑚𝑚−1)2(2𝜋𝜋𝜋𝜋)2]
}

,∞
𝑚𝑚=1        (2) 

𝛾𝛾𝑝𝑝𝑝𝑝 = 2𝜋𝜋𝜋𝜋(2𝑚𝑚 − 1)[ 𝛼𝛼2

(2𝑚𝑚−1)2𝑅𝑅𝑣𝑣2
− 1]

1
2;    𝛾𝛾𝑠𝑠𝑠𝑠 = 2𝜋𝜋𝜋𝜋(2𝑚𝑚 − 1)[ 𝛼𝛼2𝑅𝑅𝑐𝑐2

(2𝑚𝑚−1)2𝑅𝑅𝑣𝑣2
− 1]

1
2; 

 𝜗𝜗2 = 𝐸𝐸0
𝜌𝜌

, 𝑘𝑘2 = 𝜔𝜔2

𝜗𝜗2
, 𝛼𝛼 = 𝑘𝑘𝑘𝑘

𝜋𝜋
, 𝜂𝜂 = 𝑎𝑎

2𝐿𝐿
, 𝑅𝑅𝑣𝑣2 = 𝑐𝑐12

𝜗𝜗2
, 𝑅𝑅𝑐𝑐 = 𝑐𝑐1

𝑐𝑐2
.                 (3) 

 
Assuming (1) to be homogeneous, we obtain the frequency equation, from which we 

can determine the resonance frequencies 
 

(2𝑚𝑚 − 1)2(1 + 𝑖𝑖𝑖𝑖) + 𝑅𝑅𝑣𝑣22𝛾𝛾𝑝𝑝𝑝𝑝
𝑅𝑅𝑐𝑐2𝛺𝛺(2𝜋𝜋𝜋𝜋)2(2𝑚𝑚−1)2∆𝑚𝑚

− 𝛼𝛼2 = 0,          (4) 

where, 

∆𝑚𝑚=
𝐻𝐻01(𝛾𝛾𝑝𝑝𝑝𝑝)
𝐻𝐻11(𝛾𝛾𝑝𝑝𝑝𝑝)

+
𝛾𝛾𝑝𝑝𝑝𝑝𝛾𝛾𝑠𝑠𝑠𝑠𝐻𝐻01(𝛾𝛾𝑠𝑠𝑠𝑠)

(2𝜋𝜋𝜋𝜋)2(2𝑚𝑚 − 1)2𝐻𝐻11(𝛾𝛾𝑠𝑠𝑠𝑠)
. 
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If we assume that there is no soil (𝜌𝜌0 = 0) and at 𝛿𝛿 = 0, from (4) we get  
 𝛼𝛼𝑛𝑛 = (2𝑛𝑛 − 1). 
From here 
 

𝜔𝜔𝑛𝑛 = (2𝑛𝑛 − 1) 𝜋𝜋
𝐿𝐿 √

𝐸𝐸0
𝜌𝜌

,  (n = 1, 2, 3,…), 

 
which corresponds to the classical expression for determining the frequencies of natural 
longitudinal vibrations of the rod. 

3 Results and Discussion  

The main parameters are Ω, η, 𝑅𝑅𝑣𝑣, 𝛼𝛼, on which the amplitude of displacement of the rod 
(pipeline) depends. These dimensionless quantities are the ratio of the same parameters of 
the structure and the soil, meaning how many times the parameter of the structure is greater 
(or less) than the parameter of the soil; is the dimensionless relative frequency of 
exposure.𝛼𝛼 

Consider the effect of changing the frequency of exposure to vibrations of the structure. 
Changing 0 ≤ 𝛼𝛼 ≤ 10, we will build the amplitude-frequency characteristic (AFC) of the 
structure. In this case, the quantities Ω, η, 𝑅𝑅𝑣𝑣 will be fixed. Let us compare separately the 
cases 𝛿𝛿 = 0 and 𝛿𝛿 = 0,2. 

The parameter 𝛾𝛾𝑝𝑝𝑝𝑝 characterizing the longitudinal wave has zero values at 𝛼𝛼𝑚𝑚 =
(2𝑚𝑚 − 1)𝑅𝑅𝑣𝑣. In this case, the denominator of formula (2) takes the form  

 
(2𝑚𝑚 − 1)2[(1 + 𝑖𝑖𝑖𝑖) − 𝑅𝑅𝑣𝑣]. 

 
For a structure that does not have damping (𝛿𝛿 = 0), this expression will take the form  
 

(2𝑚𝑚 − 1)2(1 − 𝑅𝑅𝑣𝑣). 
 

For the movement of the structure to be infinite 𝑢𝑢𝑝𝑝 = ∞, it is necessary to assume 
𝑅𝑅𝑣𝑣 = 1. Therefore, the structure will receive infinite movement in the case с1 = 𝜗𝜗 and at 
frequencies 𝛼𝛼𝑚𝑚 = (2𝑚𝑚 − 1) (Fig. 3). A structure that has an inelastic property (𝛿𝛿 = 0,2) 
will not receive infinite or too much displacement in any resonance state. Only when the 
frequency of the impact and the first natural vibration frequency of the structure are equal, 
the movement of the latter increases noticeably (Fig. 2-4). Resonance is not observed at 
other frequencies.  

Thus, the use of materials with strong damping properties for underground structures 
will protect it from excessively large resonant vibrations. When dynamically calculating a 
system with distributed parameters, in addition to determining the frequency equation, as a 
rule, a graphical dependence of frequencies on the quantities included in this equation is 
established. This approach lends clarity to the analysis. 

In fig. 2 - 4 show the frequency response of the system, taking into account the 
attenuation in the beam at 𝛿𝛿 = 0,2. The shaded part of the graphs corresponds to the case 
when 𝛿𝛿 = 0. 

4 Conclusions  

In the construction of underground transport structures made of reinforced concrete, the use 
of various aggregates is practiced to reduce the structure's weight. Such fillers reduce the 
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elastic properties of the structure by up to 30% and significantly increase the inelastic 
properties of the building material. 

When comparing the graphs with damping (δ=0,2) and without damping (𝛿𝛿 = 0), it can 
be seen that with an increase in dissipation, the resonant amplitude of the oscillations 
decreases significantly. If at 𝛿𝛿 = 0,2 (Fig. 4a) several resonances with infinite peaks are 
observed, then at 𝛿𝛿 = 0 (Fig. 4b) there is one resonance with a finite peak.  

Note that the amplitude of displacements outside the resonance zone is insignificant. 
Thus, it is necessary to protect the structure by preventing it from entering the resonance 
zone. 
 

 

 
Fig. 2. Amplitude-frequency characteristic of the rod at Ω = 5; δ = 0.2; a - η = 0.01; b - η = 0.10; 
𝑅𝑅𝑣𝑣 = 0.5. 
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Fig. 3. Amplitude-frequency characteristic of the rod at Ω = 5; δ = 0.2; a - η = 0.01; b - η = 0.10; 
𝑅𝑅𝑣𝑣 = 1; 

 

5

E3S Web of Conferences 264, 04091 (2021)	 https://doi.org/10.1051/e3sconf/202126404091
CONMECHYDRO - 2021



 
Fig. 4. Amplitude-frequency characteristic of the rod at Ω = 5; δ = 0.2; a - η = 0.05; b - η = 0.10; 
𝑅𝑅𝑣𝑣 = 3. 
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