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 Abstract. The article discusses the issues of building intelligent 
receivers of pulsed signals with an unknown arrival time without 
restrictions on the value of the signal-to-noise ratio under the 
influence of a complex of interfering factors. Using recurrent 
methods for detecting disturbances of random processes and an 
algorithm of cumulative sums, the problem of synthesizing 
algorithms for detecting Markov signals with random moments of 
appearance against the background of various combinations of 
destabilizing factors acting in control systems for the states of rail 
lines in normal and shunt operating modes is solved. To assess the 
efficiency of detecting a random signal by the method of 
cumulative sums, statistical modeling of the specified algorithm 
was carried out. 

1 Introduction 

When building intelligent receivers of pulse signals with an unknown arrival time without 
restrictions on the value of the signal-to-noise ratio under the influence of a complex of 
interfering factors, good results are obtained using the mathematical apparatus for detecting 
the disorder of random processes [1-3]. The disorder is understood as an abrupt change in 
the properties of a random process. This can be, for example, the scalar parameter of the 
probability density distribution  hw y  of observation hy , where h is the number of the 
time sample of the signal. The issue of signal detection is solved based on the analysis of 
the realizations of the input action that are successively received at the input of the receiver. 
Since this increases the amount of memory required to memorize all observations h 
received at an arbitrary moment, the question arises of finding recurrent algorithms. Such 
algorithms are based on sufficient statistics that allow recalculating the previous values of 
observations taking into account the newly received ones [4, 5]. 
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Of the recurrent methods for detecting single disturbances, the cumulative sum algorithm 
(CSA) with a reflecting screen has found wide application [6]. It is a modified Wald 
sequential analysis [7]. Discrepancy detection is based on a comparison at the   1h  - the 

step of some decision statistics   1hS  , with fixed thresholds UПВ and UПН: 
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ПН

h h h ПВU
S S U

   Ω  , 

 
where the sign "+" means the setting of zero of the cumulative sum at the moments of time 
   ;      1,   2,  ...,  h t t h t  are successive times when   0h iS   ; 
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The UПВ threshold is set according to the required probability of a false detection F and 

determines the probability of skipping a breakdown. Thus, if at the h – the step  Ph VS U
, the hypothesis H1 is accepted (there is a disorder): 2    . If  –  Nh PS U , the 

hypothesis H0 is accepted (no discord): 1    . Otherwise, if –   PN PNhU S U  , 

  1h   – the observation. However, since this violates the assumption that the entire 
sample belongs to the hypothesis H1 or H0, then in the case when the hypothesis H0 is 
accepted at the h – the step, the cumulative sum is zeroed at the next step, etc.,  1  0hS    
[8-10]. 

3 Results and Discussions 

Let us consider the problem of synthesizing algorithms for detecting Markov signals with 
random moments of appearance against the background of various combinations of 
destabilizing factors acting in control systems for the states of rail lines [11]. 
a. Case 1: 

Let there be a sequence  , 1,hy h H  
 

   ,h ch h h hy s n        ,                                                         (2) 

 

where λch, ξh are the parameters of the useful signal ( ),ch hs    and interference ( )h 
, which are homogeneous discrete Markov chains with l – and r – states, transition pαβ, pγχ 
and initial 1( )p   – and 1( )p   – probabilities. The sequences { }ch  and { }h  are 

assumed to be statistically independent. Impulse noise ( )h   is a random process 

emissions caused by instability of the train shunt resistance [12]. Fluctuation noise  hn  is 

a correlated random process with a known conditional probability density   | 1P h hw n n  . 
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where T is the signal duration. 
The decision about the disorder is made at the moment of time h* satisfying the 

condition [13] 
*  inf  1 : } {  PVhh h S U    

 
If we restrict ourselves to considering the case of a high SIR and assume that the 

duration of the pulse signal T is such that *  mh T  , then the detection of a pulse of 
limited duration will be equivalent to recording a disorder of a random process (detection of 
the leading edge of the pulse) [14, 15]. As a result, the detection problem is solved by 
forming a cumulative sum: 
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               (4) 

 
The posterior joint probability distribution densities (PDD) of the values of the signal 

and noise parameter 1 2( ), ,( ) ( | ),h
h c c h tw p y         and one noise 

 0 0 1| ,  ( )h
hw р y     satisfy the following recurrent equations: 
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The recurrent algorithm for the formation of a posteriori PDD allows not to keep in 

memory all the previously received count of signals y1, y2, ..., yh, since they are included in 
the PDD  1 ,hw

    already formed at the previous step. This algorithm can be divided 

into two procedures performed in stages. Let us analyze this by the example of the PDD 

 0 1hw  . At the first stage of calculating the PDD, extrapolation of the previous 

posteriori PDD is carried out by the step size T0 to the moment of the next observation [16, 
17]. The extrapolated estimate of the probability distribution density has the form: 
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At the second stage, a new posteriori PDD is formed based on the extrapolated estimate 

 0 1h эw   and the next observation h ly  . As a result, we get: 
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The last entry allows us to consider the extrapolated PDD  0 1h эw   as a priori with 

respect to the next observation. 
Similar ratios can be written for posteriori PDD 1 1( ),h cw    .  
At the moment of zeroing the cumulative sums h (t), each time, it is necessary to form a 

new initial PDD (1 ( ) ) ( )( ),h t h t h tw    . 
From the above algorithm, we single out a particular case of signal detection against the 

background of interference with independent values [18]. For this, in the presented 
formulas, instead of conditional PDD and calculated based on expressions (4), it is 
sufficient to substitute one-dimensional PDD: 
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b. Case 2 
Let the observation have access to the sequence 

h h hy n                                                               (6) 
where θτ is the signal amplitude varying at an unknown time moment τ; nh is fluctuation 

noise with a known non-Gaussian PDD wn (nh), the parameters of which change at the time 
of the breakdown; impulse noise described by a Markov chain with discrete time and a 
finite number of inconsistent states      1 2, , l   . The random variables {ξh} are given 
by the matrix of transition probabilities:  
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For the case under consideration, we write the CSA in the form [19, 20]: 
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characterizes the change in the likelihood ratio at the (h + 1) – the step, where 
  2
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The initial posteriori PDD are calculated as follows: 
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In what follows, calculations using the CSA are performed similarly to case 1. 
c. Evaluation of the efficiency of algorithms for detecting signals with an unknown 

appearance time by the CSA method against the background of a complex of destabilizing 
factors  

Let us consider specific examples of the synthesis of algorithms for detecting signals by 
the CSA method and evaluating their work efficiency. Let it be required to detect a change 
in the voltage amplitude θτ at the receiver's input under the action of white Gaussian noise 
nh,  20,hn N  . Observationally available implementation: 
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Using the cumulative sum algorithm [2], we write: 
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where wн, wш are the probability distribution densities of the signal yh in normal and 

shunt modes: 
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To assess the efficiency of detecting a random signal by the method of cumulative sums 

for this observation, statistical modeling of the specified algorithm was carried out. 
Sampled values of the realization уh were fed to the input of the receiving device, in which, 
after a certain number of reports, the amplitude of the useful signal changed. The amplitude 
of the useful signal θ was considered known: θ1 = 4.8 V in the shunt mode, θ2 = 6.572 V – 
in the normal mode and unchanged in the observation interval. Figure 1 illustrates the wave 
diagrams of the input process уh and the behavior of the cumulative sum Sh; the detection of 
a disorder from the moment the pulse front appears and the solution of the receiver Н. 
Parameters of white Gaussian noise, respectively σ = 0.32 V. 

In total, 31500 realizations of the described random process were considered: 13500 
realizations in the normal one; 18000 realizations in shunt mode. Based on the results of 
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appearance time by the CSA method against the background of a complex of destabilizing 
factors  

Let us consider specific examples of the synthesis of algorithms for detecting signals by 
the CSA method and evaluating their work efficiency. Let it be required to detect a change 
in the voltage amplitude θτ at the receiver's input under the action of white Gaussian noise 
nh,  20,hn N  . Observationally available implementation: 
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Two hypotheses are considered regarding the amplitude of the useful signal θτ: 
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Using the cumulative sum algorithm [2], we write: 
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where wн, wш are the probability distribution densities of the signal yh in normal and 

shunt modes: 
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To assess the efficiency of detecting a random signal by the method of cumulative sums 

for this observation, statistical modeling of the specified algorithm was carried out. 
Sampled values of the realization уh were fed to the input of the receiving device, in which, 
after a certain number of reports, the amplitude of the useful signal changed. The amplitude 
of the useful signal θ was considered known: θ1 = 4.8 V in the shunt mode, θ2 = 6.572 V – 
in the normal mode and unchanged in the observation interval. Figure 1 illustrates the wave 
diagrams of the input process уh and the behavior of the cumulative sum Sh; the detection of 
a disorder from the moment the pulse front appears and the solution of the receiver Н. 
Parameters of white Gaussian noise, respectively σ = 0.32 V. 

In total, 31500 realizations of the described random process were considered: 13500 
realizations in the normal one; 18000 realizations in shunt mode. Based on the results of 

statistical modeling, estimates of the probabilities of missing a useful signal PPR in the 
normal mode and false signal detection in the shunt mode PLО 
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where nPR, nLO is the number of cases of missing and false signal detection; 
NN, NSh is total number of realizations in normal and shunt modes.  
 

 
Fig.1. Wave diagrams of the observed realization yh, the cumulative sum Sh and the solution of the 
receiver H 

Figure 2, a illustrates the dependence of the probability of missing a useful signal РPR 
on the root-mean-square deviation of the noise σ for various thresholds of disorder UPR. 
From the analysis of the obtained dependences, it follows that with an increase in the 
standard deviation of the interference σ, the probability of missing the useful signal РPR 
increases. 

In figure 2, b shows the probabilities of false detection of RLО from the standard 
deviation of white Gaussian noise σ for different values of the thresholds of the mismatch 
UPV. With an increase in the value of the threshold UPV, the probability of false detection 
RLО decreases. 

 

  
a b 
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Fig.2. Dependences of the probabilities of missing РPR (а) and false detection РLО (b) on the values of 
the standard deviation of fluctuation noise σ 

Let us consider the case when, in the shunt mode, both fluctuation noise nh and impulse 
noise ξh, caused by the instability of the resistance of the train shunt. Let ξh be the impulse 
component described by a Markov chain with discrete time and a finite number of 
inconsistent states. The random variables {ξh} are given by the matrix of transition 
probabilities  
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implementation at the receiver input has the form: 
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4 Conclusions 

In the simulation, 18000 realizations were considered in shunt mode. As a result of the 
research, the dependence of the probabilities of false detection PЛО on the variance of 
interference. With an increase in the value of the root-mean-square deviation of the noise σ, 
the probability of false detection PЛО increases. 
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a) with two stable states 

 

b) with three stable states 

 

Fig.3. Dependences of the probabilities of false detection under the influence of a complex of 
fluctuation noise and an impulse component of interference caused by the instability of the resistance 
of the train shunt of a two-axle railcar 

a) with two stable states 

 

b) with three stable states 

 

Fig. 4. Dependences of the probabilities of false detection under the influence of a complex of 
fluctuation noise and an impulse component of interference caused by the instability of the resistance 
of the train shunt of a three-axle railcar 

a) with two stable states 

 

b) with three stable states 

 

Fig. 5. Dependences of the probabilities of false detection under the influence of the complex of 
fluctuation noise and the impulse component of the noise caused by the instability of the resistance of 
the train shunt of the diesel locomotive 

d. In figure 3 shows the probabilities of false detection PЛО from the standard deviation 
of white Gaussian noise σ when in the shunt mode, impulse noise is affected due to 
the instability of the resistance of the train shunt of a biaxial railcar for various states 
of the tread surface: a - clean and b - contaminated. 
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e. Figure 4 illustrates the dependence of the probabilities of false detection PЛО when 
in the shunt mode there is interference caused by the instability of the resistance of 
the train shunt of the TU-5 diesel locomotive on the section with a clean rolling 
surface - a and with a rust-covered layer - b. 

f. In figure 5 shows the probabilities of false detection PЛО from the standard deviation 
of white Gaussian noise σ when in the shunt mode there is interference caused by 
the instability of the resistance of the train shunt of a triaxial railcar for various states 
of the rolling surface: a - clean and b - contaminated. 
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