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Abstract. The aim of the study is to obtain the parameters of vehicle size 
variability and evaluate the convergence of empirical data with the 
modeling results using distribution functions. The main results of the study 
consist in obtaining statistical parameters that characterize the variability of 
vehicle sizes, and testing hypotheses about whether the empirical 
distribution belongs to one of the theoretical distribution functions. The 
significance of the obtained results lies in the possibility of using the most 
suitable theoretical functions of probability distributions of random 
variables that characterize the variability of vehicle sizes in algorithms for 
estimating the resource parameters of steel spans of road bridges. 
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1 Introduction 
The practical state of the traffic flows shows statistical studies issue that the main 
dimensions of vehicles (length, wheelbase, track and width) have a certain statistical 
variability. 

In the work of Drew D., it was proposed to use the parameters of four types of 
calculated cars – passenger, cargo, tractor-trailer with a medium semi-trailer, tractor-trailer 
with a large semi-trailer-the total length of which is 5.79 m., 9.14 m., 15.24 m., 16.76 m, 
respectively [1]. 

Abdunazarov proposed the parameters of the recommended design cars for the design of 
highways. However, his works do not provide a justification for the accepted law of 
distribution of a random variable for describing these parameters [2, 3]. It is proposed to 
take the value of 4.9 m as the calculated value of the length for a passenger car, and 6.8 m 
for a truck. This means that the proposed calculated values of the size of vehicles do not 
allow the design of structures on highways with a given level of confidence. 

The variability of the cars and other vehicles parameters are considered at the level of 
national standards and reflected in the reference literature [4-6]. Although the systematized 
data are proposed as part of the assessment of the safety of vehicle operation, the 
information obtained can be used in the formation of mathematical models at various 
levels. 
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The research is conducted in a direction related to the selection and justification of the 
distribution laws for further modeling. The authors Haq S., Temkin M., Black L. and 
Bammel P. present methods that are used in the development of road simulation models to 
determine the fluctuations in road load [7]. The method of statistical analysis of the most 
representative load profile from a set of time cycles is considered. 

The researcher Yakubovich A. N. proposed an algorithm for constructing a sample from 
realizations of a random variable for which its probability density is known [8]. The 
proposed algorithm does not use pseudorandom number generators and is characterized 
byhigh accuracy to reproduce the simulated distribution law with a small number of 
implementations. 

Mazloumian A., Geroliminis N., and Helbing D. reveal fundamental relationships 
between mean flow, mean density, and vehicle density variability [9]. The motion 
inhomogeneities are considered as an independent variable, which makes it possible to 
exclude the scattering of an overloaded flow measurements. 

The authors Jiwon K., Hani S. M. propose a comprehensive probability distribution 
approach to account for the inter-vehicle and daily variability of traffic flow in the road 
network [10]. When modeling the traffic delay, a gamma model is proposed. The main 
advantage of the model is its ability to recognize different sizes of flow variability, which 
are reflected in the time cycles of movement. 

The study of the variability of physical parameters using various laws is described in the 
works of the authors Chen P., Ansari Esfeh M., Chiou J. M., Manapov A. Z. and others [11-
16]. There are other works in this area of research [17-21]. 

It is obvious that for passenger cars there is a steady trend towards a certain increase in 
the size of vehicles with the release of updated models. For trucks, the variability in size is 
often associated with an increase in traffic volumes and with intensive cooperation at the 
international level, when automobile factories of foreign manufacturers are opened in 
different regions. 

In this paper, the authors conducted a statistical study aimed at finding acceptable 
theoretical functions of probability distributions that allow us to take into account the 
variability of the main dimensions of vehicles on public roads when conducting a multi-
factor simulation of the operation of steel spans of road bridges. 

2 Materials and methods 
In order to obtain the parameters of vehicle size variability, the authors conducted a 
statistical analysis, during which samples of the most common vehicle models were 
compiled, grouped by type: the first group – passenger cars; the second group-trucks, 
including single cars, semi-trailers and automobile trains. 

Considering that at the moment there is no single international classification of vehicles. 
The statistical analysis of the passenger cars size variability is based on the accepted 
segmentation in the Economic Commission for Europe. The most common passenger car 
brands were grouped into the following segments: A − «mini cars», B − «small cars», C − 
«medium cars», D − «large cars», E − «executive cars», F − «luxury cars», S − «sport 
coupes», M −»multi-purpose cars», J − «sport utility cars (including off-road vehicles) ». 
The trucks were grouped into four segments: MT − «low-tonnage single trucks, carrying 
capacity up to 3 tons»; CT − «medium-tonnage single trucks, carrying capacity from 3 to 5 
tons, body volume not less than 35 m3»; CT-1 − «large-tonnage trucks, including semi-
trailers and trailed road trains, carrying capacity from 5 tons, body volume not less than 80 
m3, weighing up to 20 tons inclusive»; KT-2 − «large-capacity trucks, including semi-
trailers and trailed road trains, carrying capacity from 5 tons, body volume of at least 80 m3, 
weight from 20 to 44 tons inclusive». The total volume of samples was 211 passenger car 
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brands and 261 modifications of various manufacturers trucks. The statistical parameters 
that characterize the variability in the size of vehicles are shown in table 1. 

Table 1. Statistical parameters that characterize the variability of vehicle sizes. 

Vehicle parameters 

Cross-group and generalized statistical characteristics for 
the entire sample data set 

(*)T , m (*)TzsD , 
m2 

(*)TzD , 
m2 

(*)TD , 
m2 

(*)T , 
m 

(*)Tv  

Segments A, B, C, D, E, F, S, M, J 
Passenger car length LT,1 4.542 0.081 0.254 0.335 0.579 0.127 
Passenger car wheelbase dT,1 2.726 0.023 0.058 0.081 0.285 0.104 
Passenger car tread KT,1 1.552 0.003 0.006 0.009 0.093 0.060 
Passenger car width BT,1 1.813 0.005 0.009 0.014 0.116 0.064 

Segments МТ, СТ, КТ-1, КТ-2 
TrucklengthLT,2 8.857 3.300 51.783 55.083 7.422 0.838 
Truck wheelbase dT,2 4.993 1.860 14.760 16.620 4.077 0.816 
Trucktread KT,2 1.842 0.019 2.904 2.923 1.710 0.928 
Truck width BT,2 2.276 0.020 4.554 4.574 2.139 0.940 

The following designations are accepted:  (*)T – general mean for the whole population; 

(*)TzsD  – intra–group variance; (*)TzD  – inter–group variance; (*)TD – generalized 

variance; (*)T
 
– standard deviation for the whole population; (*)Tv

 
– coefficient of 

variation for the whole population [22]. 

To describe the parameters that characterize the variability of vehicle dimensions (*)T, four 
competing probability distribution functions were considered, with their characteristic 
statistical estimates, the values of which are presented in table 2. 

Table 2. Random variable distribution functions. 

Distribution Probability density function of the distribution 
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The results of estimating the convergence of theoretical and empirical distributions of 
random variables of vehicle size variability are performed using a sample correlation 
coefficient r(*) T with the construction of a confidence interval CI (*) T (Table 3). 
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Table 3. Statistical characteristics of generalized data samples (for all segments and groups) that 
characterize the variability of vehicle sizes. 

Parameter nΣ, (*)T , 
m 

(*)T , m (*)Tv  med�∗�� mod�∗�� 

Vehicle length LT 

472 

6.928 4.433 0.640 5.801 19.825 
Vehicle wheelbase dT 4.329 3.275 0.757 3.350 3.800 
Vehicle tread KT 1.748 0.323 0.185 1.683 2.032 
Vehicle width BT 2.111 0.445 0.211 2.010 2.500 

( )Tmed   - sample median; ( )Tmod  - sample moda 

To construct the confidence interval CI(*)T for the correlation coefficient r(*)T, obtained from 
a small sample divided into Requal-length segments, the well-known Fisher transform is 
used: 

( ) T
( ) T

( ) T

1
0.5 ln

1
r

z arth r
r






  


 (1) 

where arthr(*)T– inverse hyperbolic tangent function for the correlation coefficient r(*)T.  
Let's check the null hypothesis H0[(*)T] that the empirical distribution obeys one of the 

theoretical ones constructed from a sample of volume nΣ. The test was performed using the 
Pearson's agreement criterion χ2 for the significance level α = 0.05 [22] 

2
2 ( ' )

,
'

i i

i

n n
n




   (2) 

Where ni = n1, n2, ... nR,иn'i = n'1, n'2, ... n'R,- empirical and theoretical frequencies, 
respectively. 

The results of testing the hypothesis that the sample belongs to a certain distribution law 
are presented in table 4. 
Table 4. Statistical estimates of the parameters of the distribution functions used to describe the 
variability of vehicle dimensions. 

Parameter 

Statistical estimates for accepted distribution functions 
Normal 

distribution 
[( )T]NF   

Rayleigh 
distribution

[( )T]RF   

Distribution 
Gumbel

[( )T]GF   

Uniform 
distribution 

[( )T]UF   

LT, m 
 6.928LT 

4.433LT   
5.528LT   

4.932LT   
3.456LT   

2.285LT   
19.905LT   

dT, m 
 4.329dT 

3.275dT   
3.454dT   

2.854dT   
2.553dT   

1.500dT   
18.900dT   

KT , m 
 1.748KT 

0.323KT   
1.395KT   

1.602KT   
0.252KT   

1.200KT   
2.330KT   

BT, m 
 2.111BT 

0.445BT   
1.684ВT   

1.910BT   
0.347BT   

1.380BT   
2.722BT   
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Table 5.Results of the estimation of the convergence of theoretical and empirical distributions of the 
random variable of vehicle size variability by the sample Pearson correlation coefficient for a 
confidence probability of 0.95. 

Parameter 

The value of the Pearson sample correlation coefficient r(*)T/ confidence 
interval CI(*)Tfor the correlation coefficient for the corresponding theoretical 
distribution functions 

Normal 
distribution

[( )T]NF   

Rayleigh 
distribution

[( )T]RF   

Distribution 
Gumbel

[( )T]GF   

Uniform 
distribution 

[( )T]UF   

LT, m 
0.534/ 

(0.119; 0.703) 
0.660/ 

(0.207; 0.746) 
0.695/ 

(0.230; 0.757) 
-0.004/ 

(0.364; 0.357) 

dT, m 
0.554/ 

(0.134; 0.711) 
0.687/ 

(0.225; 0.755) 
0.692/ 

(0.228; 0.756) 
0.081/ 

(-0.287; 0.430) 

KT , m 
0.665/ 

(0.211; 0.748) 
0.457/ 

(0.057; 0.670) 
0.735/ 

(0.254; 0.767) 
-0.035/ 

(-0.391; 0.3296) 

BT, m 0.440/ 
(0.043; 0.663) 

0.221/ 
(-0.155; 0.536) 

0.467/ 
(0.066; 0.675) 

-0.116/ 
(-0.458; 0.254) 

Table 6. Results of testing hypotheses about whether an empirical distribution belongs to one of the 
theoretical distribution functions according to the Pearson agreement criterion χ2. 

Parameter 

Theoretical probability distribution functions used to describe parameters that 
characterize the variability of vehicle dimensions 

Normal 
distribution

[( )T]NF   

Rayleigh 
distribution

[( )T]RF   

Distribution 
Gumbel [( )T]GF   

Uniform distribution 
[( )T]UF   

LT, м 2.672 2.133 1.489 6.265 
dT, м 4.290 16.332 1.893 7.418 
KT , м 12.833 45.992 12.514 955.122 
BT, м 26.223 67.240 30.897 1273.283 

4

E3S Web of Conferences 274, 02001 (2021)	 https://doi.org/10.1051/e3sconf/202127402001
STCCE – 2021



Table 3. Statistical characteristics of generalized data samples (for all segments and groups) that 
characterize the variability of vehicle sizes. 

Parameter nΣ, (*)T , 
m 

(*)T , m (*)Tv  med�∗�� mod�∗�� 

Vehicle length LT 

472 

6.928 4.433 0.640 5.801 19.825 
Vehicle wheelbase dT 4.329 3.275 0.757 3.350 3.800 
Vehicle tread KT 1.748 0.323 0.185 1.683 2.032 
Vehicle width BT 2.111 0.445 0.211 2.010 2.500 

( )Tmed   - sample median; ( )Tmod  - sample moda 

To construct the confidence interval CI(*)T for the correlation coefficient r(*)T, obtained from 
a small sample divided into Requal-length segments, the well-known Fisher transform is 
used: 

( ) T
( ) T

( ) T

1
0.5 ln

1
r

z arth r
r






  


 (1) 

where arthr(*)T– inverse hyperbolic tangent function for the correlation coefficient r(*)T.  
Let's check the null hypothesis H0[(*)T] that the empirical distribution obeys one of the 

theoretical ones constructed from a sample of volume nΣ. The test was performed using the 
Pearson's agreement criterion χ2 for the significance level α = 0.05 [22] 

2
2 ( ' )

,
'

i i

i

n n
n




   (2) 

Where ni = n1, n2, ... nR,иn'i = n'1, n'2, ... n'R,- empirical and theoretical frequencies, 
respectively. 

The results of testing the hypothesis that the sample belongs to a certain distribution law 
are presented in table 4. 
Table 4. Statistical estimates of the parameters of the distribution functions used to describe the 
variability of vehicle dimensions. 

Parameter 

Statistical estimates for accepted distribution functions 
Normal 

distribution 
[( )T]NF   

Rayleigh 
distribution

[( )T]RF   

Distribution 
Gumbel

[( )T]GF   

Uniform 
distribution 

[( )T]UF   

LT, m 
 6.928LT 

4.433LT   
5.528LT   

4.932LT   
3.456LT   

2.285LT   
19.905LT   

dT, m 
 4.329dT 

3.275dT   
3.454dT   

2.854dT   
2.553dT   

1.500dT   
18.900dT   

KT , m 
 1.748KT 

0.323KT   
1.395KT   

1.602KT   
0.252KT   

1.200KT   
2.330KT   

BT, m 
 2.111BT 

0.445BT   
1.684ВT   

1.910BT   
0.347BT   

1.380BT   
2.722BT   

 

5 

Table 5.Results of the estimation of the convergence of theoretical and empirical distributions of the 
random variable of vehicle size variability by the sample Pearson correlation coefficient for a 
confidence probability of 0.95. 

Parameter 

The value of the Pearson sample correlation coefficient r(*)T/ confidence 
interval CI(*)Tfor the correlation coefficient for the corresponding theoretical 
distribution functions 

Normal 
distribution

[( )T]NF   

Rayleigh 
distribution

[( )T]RF   

Distribution 
Gumbel

[( )T]GF   

Uniform 
distribution 

[( )T]UF   

LT, m 
0.534/ 

(0.119; 0.703) 
0.660/ 

(0.207; 0.746) 
0.695/ 

(0.230; 0.757) 
-0.004/ 

(0.364; 0.357) 

dT, m 
0.554/ 

(0.134; 0.711) 
0.687/ 

(0.225; 0.755) 
0.692/ 

(0.228; 0.756) 
0.081/ 

(-0.287; 0.430) 

KT , m 
0.665/ 

(0.211; 0.748) 
0.457/ 

(0.057; 0.670) 
0.735/ 

(0.254; 0.767) 
-0.035/ 

(-0.391; 0.3296) 

BT, m 0.440/ 
(0.043; 0.663) 

0.221/ 
(-0.155; 0.536) 

0.467/ 
(0.066; 0.675) 

-0.116/ 
(-0.458; 0.254) 

Table 6. Results of testing hypotheses about whether an empirical distribution belongs to one of the 
theoretical distribution functions according to the Pearson agreement criterion χ2. 

Parameter 

Theoretical probability distribution functions used to describe parameters that 
characterize the variability of vehicle dimensions 

Normal 
distribution

[( )T]NF   

Rayleigh 
distribution

[( )T]RF   

Distribution 
Gumbel [( )T]GF   

Uniform distribution 
[( )T]UF   

LT, м 2.672 2.133 1.489 6.265 
dT, м 4.290 16.332 1.893 7.418 
KT , м 12.833 45.992 12.514 955.122 
BT, м 26.223 67.240 30.897 1273.283 
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Fig. 1. Frequency diagram of statistical data φ and theoretical distribution density functions f of the 
parameter LT. 

 
Fig. 2. Frequency diagram of statistical data φ and theoretical distribution density functions f of the 
parameter dT.. 
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Fig. 3. Frequency diagram of statistical data φ and theoretical distribution density functions f of the 
parameter KT.. 

 

 
Fig. 4.Frequency diagram of statistical data φ and theoretical distribution density functions f of the 
parameter BT. 

In the graphs of figures 1-4, the red solid line is the density of the distribution according to 
the normal law, the brown solid line is the density of the distribution according to the 
Rayleigh law; the blue solid line is the density of the distribution according to the Gumbel 
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law (Type I), the black dotted line is the density of the distribution according to the uniform 
law, the green diagram is statistical data. 

3 Results and discussion 
The results of the analysis of the data of the statistical study conducted to evaluate the 
parameters of the distribution functions that can be used to describe the variability of 
vehicle sizes, presented in figures 1-4 and in tables 3-6, showed: 

Parameter «car length», LT. To describe the LT parameter, the theoretical Gumbel 
distribution function with the position parameter (mode) µLT= 4.932 m and the scale 
parameter λ LT = 3.456 m is adopted, taking into account the existing restrictions on the 
maximum length of road trains of 20 meters for public roads. For the accepted distribution 
function, the sample Pearson correlation coefficient has the highest value compared to other 
alternative theoretical probability distribution functions considered and is within the range 
of 0.5 <r LT =0.695 < 0.7, while the confidence interval with a reliability of 0.95 for the 
correlation coefficient CI LT = (0.230; 0.757) does not pass through zero – therefore, we can 
judge the presence of a direct noticeable linear correlated relationship on the Cheddock 
scale between the empirical and accepted theoretical distribution functions of the calculated 
parameter LT. 

The «car wheelbase» parameter, dT. To describe the dT  parameter, the theoretical 
Gumbel distribution function with the position parameter (mode) µDT  = 2.854 m. and the 
scale parameter λ DT =2.553 m. For the accepted distribution function, the Pearson sample 
correlation coefficient has the highest value compared to other alternative theoretical 
probability distribution functions (competing hypotheses) considered and is within the 
range of 0.5 <r DT =0.692 < 0.7, while the confidence interval with a reliability of 0.95 for 
the correlation coefficient CI DT  = (0.228; 0.756) does not pass through zero – therefore, we 
can judge the presence of a direct noticeable linear correlated relationship on the Cheddock 
scale between the empirical and accepted theoretical distribution functions of the calculated 
parameter dT. 

Parameter «car track», KT. To describe the KT. parameter, the theoretical Gumbel 
distribution function with the position parameter (mode) µKT = 2.854 m and the scale 
parameter λKT = 2.553 m is adopted. For the accepted distribution function, the Pearson 
sample correlation coefficient has the highest value compared to other alternative 
theoretical probability distribution functions considered (competing hypotheses) and is 
within the range of 0.7 <rKT =0.735 < 0.9, while the confidence interval with a reliability of 
0.95 for the correlation coefficient CIKT= (0.254; 0.767) does not pass through zero – 
therefore, we can judge the presence of a direct high linear correlated relationship on the 
Cheddock scale between the empirical and accepted theoretical distribution functions of the 
calculated parameter KT. 

The «car width» parameter, BT. To describe the BT parameter. the theoretical function of 
the Normal distribution is adopted, with the mathematical expectation parameter µBT= 
2.111 m. and the variance ΔBT=0.445, taking into account the existing restrictions on the 
largest width of cars 2.55 m. for public roads. For the accepted distribution function, the 
Pearson sample correlation coefficient has the highest value compared to other alternative 
theoretical probability distribution functions considered (competing hypotheses) and is in 
the range of 0.3 <rBT=0.440 < 0.5, while the confidence interval with a reliability of 0.95 
for the correlation coefficient CIBT = (0.043; 0.663) does not pass through zero – therefore, 
we can judge the presence of a direct moderate linear correlated relationship on the 
Cheddock scale between the empirical and accepted theoretical distribution functions of the 
calculated parameterBT. 
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4 Conclusions 
The statistical analysis of the variability of the main dimensions of vehicles (length, 
wheelbase, track and width) showed that the following functions can be used to develop an 
algorithm for calculating the steel spans of road bridges based on the probability of failure-
free operation in the first approximation: 

- the distribution function of the extreme value (type I Gumbel) with the following 
parameters provisions μ(*)T and scale λ(*)T: to describe the size of the «length of the car» – 
μLT = 4.932 m and λLT =3.456 m; to describe size «wheelbase of the car» – μdT = 2.854 m 
and λdT = 2.553 m.; to describe the size of a «track car» – μKT = 2.854 m and λKT = 2.553 m.; 

- function of the normal distribution with the following parameters μ(*)T and D(*)T – 
scores of mathematical expectations and variances to describe the size of the «width of the 
car» – μBT = 2.111 m., ΔBT = 0.445. 

When using the asymptotic distribution to create arrays of calculated parameters pseudo-
random implementations that characterize the main dimensions of vehicles, it is necessary 
to introduce boundary conditions that take into account the physical nature of the calculated 
factors, as well as the requirements of the design standards for public roads. The noted 
imperfection of the asymptotic distribution can be eliminated by converting it to a truncated 
distribution. The transformation is performed by reallocating events from the region of 
impossible values for a particular physical parameter to the region of possible values. 
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