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Abstract The goal of this study is to develop and apply an approximate 
method for calculating integrals that are part of models using Riemann-
Liouville integrals, and to create a software product that allows such 
calculations for given functions. The main results of the study consist in 
the construction of a quadrature formula for an integral, and the cases 
where the density of the integral is a function from the spaces of 
continuous functions with generalized derivatives with weight and the 
Helder classes of functions with weight were considered. For the proposed 
quadrature formula we further investigated the error of its approximation in 
the spaces of continuous functions and quadratic-summing functions with 
weight. As a result of the study, effective error estimates of the 
approximating apparatus in the proposed classes of functions have been 
established. In addition, the approximated method has been implemented 
on the computer in the form of a program in the C language. The 
significance of the obtained results for the construction industry consists in 
the fact that when solving problems, including problems on finding the 
shapes of structures, taking into account the properties of materials, 
environmental changes, in the models of which the Riemann-Liouville 
integrals are used, it will be possible to apply an approximate approach, the 
quadrature formula proposed in the article. 
Keywords: Riemann-Liouville integrals, Fourier series, quadrature 
formulas, approximate calculations, error estimates. 

1 Introduction 
In recent decades, there has been increasing interest in the study of fractional order 
differential equations in which the unknown function is contained in the fractional order 
derivative, as well as in fractional order integral equations. This is due to a number of 
reasons. First, the development of the theory of fractional integration and differentiation as 
such, such as the works [1, 2], the review work [3], which presents the experience of M. 
Jrbashyan's research related to the modern theory of fractional calculus. Second, extensive 
applications of this mathematical apparatus in various fields of science and industry [4], 
especially in fields related to nanotechnology, diffusion problems, as well as in creating 
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structures that take into account the state of matter. Thus, in particular, using fractional 
order integrals in solving problems in continuum mechanics related to studies of elasticity 
theory, the authors [5] propose a generalized theory capable of capturing both stiffness and 
softening effects, under selected external loads and boundary conditions. In a number of 
technical problems (in diffusion problems, for example), economic (for example, in 
sustainable development problems) unstable systems are used, description of which is 
connected with fractional integrals, on the basis of which models of processes under study 
are created [6], and for regulation of such processes PID regulators are created, the basis of 
which also uses fractional integration, the developers [7, 8] suggest ways to improve them.  

Such a wide application of fractional integrals requires the development of theoretical 
developments on fractional integration, expansion of classes of their solutions, finding 
evaluations and establishing properties in various classes of solutions. In the last year alone, 
a large number of papers have been published on the theoretical justification of solutions to 
problems using fractional integrals. Thus, the authors [9] proposed new inequalities for a 
class of differentiable functions related to Chebyshev functionals for the weighted 
fractional integral, the authors [10] established some generalized fractional integral 
inequalities, in [11] a generalization of the Hermite-Hadamard inequality for the fractional 
integral. In [12] the authors investigate the existence of solutions for a nonlinear coupled 
fractional order system, they proposed to convert this system to an equivalent stationary 
point problem, with its subsequent solution. In [13], an analytical solution of the stationary 
fractional advection-diffusion equation for modeling the dispersion of air pollutants in finite 
media was investigated. The authors of [14] proved the existence, uniqueness, and stability 
by Hayers-Ulam of the coupled system of nonlinear fractional-differential equations.  

As a rule, equations involving integral operators with fractional order are not solved 
exactly in general form, exceptions are some particular problems, such as those considered 
by the authors [14]. Therefore it becomes necessary to apply an approximate apparatus for 
their solution. The authors [15, 16] previously conducted studies in the field of approximate 
methods of fractional integrals. However, studies in this direction remain relevant at the 
present time as well. Thus, the author [17] constructed quadrature generalized Gauss-
Laguerre formulas for the boundary value problem with a fractional degree of an elliptic 
operator. Works [18, 19] also propose approximative apparatuses for solving problems 
based on the Lagrangian polynomial interpolation [19]. For the control problem, the authors 
[20] present a Galerkin spectral scheme using weighted Jacobi polynomials and give 
optimal estimates of the spectral method error, and in [21] the finite element approximation 
of the fractional optimal time control problem with integral state constraint is investigated. 
In addition, computer programs are developed to implement computational schemes of 
approximate methods, for example, the author [22] performed all numerical calculations in 
the study on the computer in programs written in MATLAB. 

Thus, there are many approximation methods for solving problems containing fractional 
order integrals. The choice of an approximation apparatus depends on the problem and the 
efficiency of the approximation method in a particular case. The method proposed in the 
paper is effective exactly for infinite integration intervals. So, in [23], for approximation of 
intermittent functions, the use of the partial sums of the Fourier series is also offered. 

2 Methods 
We also carried out works based on known methodological approaches to solve 
approximation problems, first by projection-grid methods [24, 25], then by constructing 
quadrature formulas for integrals [26, 27]. 

At first, let us indicate some definitions and auxiliary sentences that will be used in the 
presentation of the material.  

Recall that the function ���� ∈ ������� � 0�, � ∈ ��∞;�∞�, having derivatives to �	 
order with weight 	����:  �������� � ���� �

�� ��
��������,			� � 1, �����,	 and for it the condition 
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From the orthogonality property of functions������, ������ with weight � of the entire 
numeric line is followed by the following  

Lemma 2. If ���� ∈ �����, � � 1,	 then ������ � ������������������ ,	if ���� ∈
��

���, � � 1,	 then ������ � ���������. 
Consequence 1. If ���� ∈ ��,�������, � � 0, 0 � � � 1,	 then  
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2�� � 1���� . 

Consequence 2. If  ���� ∈ ��
���, � � 1,	 then ������ � ��

�������. 
Denote by � � ��,� � linear normalized space of quadratically summable functions 

with weight �. As a reminder, hereinafter in the article ���� � �
����.  

Let us introduce the norm ‖�‖� � ��
� �

�������
����

�
�� . 

The following estimates are valid for the sum (1), presented in the form of a lemma. 
Lemma 3. For any natural n=1,2,... the relations are valid: 

‖��‖��� � 1,						‖��‖��� � 	2� ln�.	 
The following is also true. 
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Theorem 1. If ���� � ����;���,	 then the error estimate of the function 
approximation by partial sums of the Fourier series (1) in the space�: 

‖� � ���‖� � 2������ . 
Consequence 1. If ���� � ��,�������, � � 0, 0 � � � 1,	 then  

‖� � ���‖� � 9��
�� � 1���� . 

Consequence 2. If ���� � ��
���, � � 1,	 then 

‖� � ���‖� � ��
�� � 1�� . 

The proof of Theorem 1 follows from the well-known Lebesgue theorem and estimates of 
Lemma 3, and Corollaries 1, 2 of Theorem 1 follow directly from Corollaries 1, 2 of 
Lemma 3, respectively. 

The following is also true. 
Theorem 2. If ���� � ����;���,	 then the estimate of the error of function 

approximation by partial sums of the Fourier series (1) in the space of continuous functions 
is valid: 

‖� � ���‖� � �3� ln�������� . 
 

Consequence 1. If ���� � ��,�������, � � 0, 0 � � � 1,	 then  

‖� � ���‖� � 9��3� ln���
2�� � 1���� . 

Consequence 2. If ���� � ��
���, � � 1,	 then 

‖� � ���‖� � ��
2�� � 1�� �3� ln��. 

The assertions of Theorem 2, as well as corollaries 1, 2 follow directly from Lemma 3 and 
its corollaries. 

3 Results and discussion 
Consider the Riemann-Liouville integral on an infinite interval 
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Here is the function����,		 defined on the numeric axis ���; 	���   
By approximating the density of the integral (2) by the partial sum of the Fourier series 

(1), we arrive at the following approximation: 

�������; �� � 1
���� �

���2 � ∑ ������� � ������ ������ ��
�� � �����

�

��
� 

� ��
2 ���������� � ��

�

���
������, 

(3) 

where  

������ � 1
�2��� cos �2������� �

��
2 � ,						������ � 	

1
�2��� sin �2������� �

��
2 �,	 

�� � 2
� � �����������

1� ��
�

��
,			� � 0, 1, .. 

�� � 2
� � �����������

1� ��
�

��
,			� � 	1,2, .. 

(4) 

For formula (3) - (4) the following takes place  
Lemma 4. If ���� � ����;���,	 then there is an estimate 

‖����� � ����‖�� � 1
�2���� ‖� � ���‖�� . 

The rate of convergence of the approximate process (3) on the space metric H is 
characterized by the following 

Theorem 3. If ���� � ��,�������, �� � 0, 0 � � � 1�, then there is an estimate 

‖����� � ����‖� � � � 1
�� � 1�������. 

If ���� � ��
���, � � 1,	 then 

‖����� � ����‖� � � � 1
�� � 1�����. 

The assertions of the theorem follow directly from Lemma 4 and Consequences 1 and 2 of 
Theorem 1, respectively. 

Next, let us consider the error estimates of the approximated formula (3) in the uniform 
metric, for proving which we will use the statement of the following lemma. 

Lemma 5. For any natural n=1,2, ... equitably estimate 

‖�����‖��� � 4
2� �1� ln��. 

Theorem 4. If ���� � ��,�������, �� � 0, 0 � � � 1�, then a fair estimate is 

‖����� � ����‖� � 18��
2��� � 1���� �1� ln� 2

1� 2���� �
1� 2����

�1� 2������ ln2�. 
If ���� � ��

���, � � 1,	 then 

‖����� � ����‖� � 2��
2��� � 1�� �1� ln� 2

1� 2�� �
1� 2��

�1� 2���� ln2�. 
Evaluating the residual term of formula (3) and applying consequence 1, 2 of lemma 2 and 
the results of lemma 5, we obtain the statement of the theorem. 

4 Conclusions 
The paper proposes a quadrature formula (3) with coefficients (4) for the Riemann-
Liouville integral on the infinite interval (2). The rates of convergence of the approximation 
apparatus (3) in the metrics of the spaces of continuous functions and quadratically summed 
with weight functions are established (Theorems 4 and 3, respectively). In addition, these 
estimates are obtained for the approximation of the integral (2) in the cases of densities 
���� � ��,�������, �� � 0, 0 � � � 1�	and ���� � ��

���, � � 1. We believe that this research 
will be interesting as a theoretical justification for the application of quadrature formulas 
for Riemann-Liouville integrals on the infinite interval. In addition, the authors have 
developed a program that implements the approximate method in the C programming 
language.  
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