Treatment of oil-containing wastewater of machine-building enterprises using pressure hydrocyclones

Andrey Busarev*1[0000-0002-7063-2519], and Aleksandr Selyugin1[0000-0003-2427-3698]

¹Kazan State University of Architecture and Engineering, 420043 Kazan, Russia

Abstract. Wastewater treatment of machine-building enterprises contaminated with oils, petroleum products and mechanical impurities is an urgent task. A promising direction in the field of treatment of such wastewater is the use of pressure hydrocyclones and hydrocyclone installations. The article presents the results of research on the treatment of oil-containing wastewater of machine-building enterprises in pressure of hydrocyclones, conducted on an experimental hydrocyclone installation, which includes the pressure hydrocyclone under test, a sedative tank, and tanks for receiving water from the upper and lower drains of the hydrocyclone. The studies were carried out in two stages: the first stage was used to determine the diameter of the pressure of hydrocyclone suitable for the treatment of oily wastewater, and the second stage was used to study its geometric characteristics. At the first stage, seven modifications of pressure hydrocyclones with a diameter of 40 to 100 mm with different diameters of the upper and lower drain pipes were tested. A 75 mm diameter hydrocyclone is recommended for the treatment of oily wastewater. At the second stage, nine pressure hydrocyclones with a diameter of 75 mm with different diameters of the upper and lower drain pipes were tested. As a result of the experiments, the design parameters of the hydrocyclone that showed the best results were determined. The results of the research were used in the design of industrial hydrocyclone installations.

Keywords. Oily wastewater, treatment, hydrocyclone, experimental plant, research, industrial plant.

1 Introduction

Oil-containing waste water is formed in oil fields during the production and preparation of oil, during car washing, from the cooling of technological equipment at machine-building enterprises, in fuel oil storage tanks, etc.

For the treatment of wastewater from petroleum products and suspended solids, settling tanks of various designs are often used [1-4]. Hydrocyclones with different geometries are often used for the treatment of oily wastewater [5-9].

Kazan State University of Architecture and Engineering (KSUAE) has developed devices that combine the treatment of oil-containing wastewater in pressure hydrocyclones,

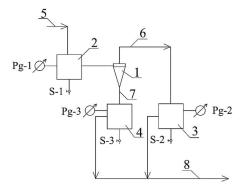
^{*}Corresponding author: kgasu.viv@gmail.com

[©] The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

succeeded by purification from petroleum products and suspended substances by sedimentation. These installations are called the «hydrocyclone – sump block» (HSB) [10, 11]. Coalescing nozzles made of granular materials are used to intensify the deposition of oily wastewater [12].

Chemical purification of water from petroleum products is carried out by the method of oxidation [13–16]. Biological purification of water from petroleum products is carried out using membrane bioreactors [17–20].

Physical and chemical methods are also used for the treatment of oily wastewater: flotation [21], sorption [22], ultrafiltration [23], as well as electrocoagulation [24].


Deep purification of oil-containing wastewater from petroleum products and suspended substances is carried out in filters with granular loading [25–27].

The aim of the study was to define the geometric parameters of the pressure hydrocyclone for its use in industrial hydrocyclone facilities for the treatment of oil-containing waste water effluent.

2 Materials and methods

Studies of the oil-containing wastewater treatment processes at machine-building enterprises were carried out in two stages: at the first stage, the diameter of the pressure hydro cyclone was determined, and at the second stage, its geometric characteristics were determined. At the first stage, seven modifications of pressure hydrocyclones with a diameter of 40 to 100 mm with different diameters of the upper and lower drain pipes were tested.

To determine the geometric parameters of the hydrocyclone intended for operation as part of the installation of the «hydrocyclone – sump unit», studies of the oil-containing wastewater treatment processes were carried out on an experimental hydrocyclone installation (Fig. 1).

Fig. 1. The Scheme of the experimental installation: 1 - pressure hydrocyclone; 2 - sedative tank; 3 - tank for receiving water from the upper drain of the hydrocyclone; 4 - tank for receiving water from the lower drain of the hydrocyclone; 5 - waste water supply; 6 - pipeline of the upper drain of the hydrocyclone; 7 - pipeline of the lower drain of the hydrocyclone; 8 - pipeline for removing liquid to the sewer.

During the research, oil-containing waste water was supplied to the installation by a pump through pipeline 5. Water from the upper drain of the hydrocyclones was diverted through pipeline 6, and from the lower drain of these devices – through pipeline 7. From tanks 3 and 4, the liquid was diverted through pipeline 8 to the industrial sewage system. The pressure at the inlet to the hydrocyclones was set according to the readings of the pressure gauge Pg-1 installed on the tank 2.

In the course of the research, after the flows at the inlet to the hydrocyclone and at its drains became steady, samples of the initial waste water from the S-1 sampler and liquid from the upper and lower drains of the hydrocyclone from the Pg-2 and Pg-3 samplers were simultaneously taken. In the samples, the concentration of mechanical impurities was

determined by the weight method, and the concentration of petroleum products was determined by the photo colorimetric method [1, 28].

Table 1 shows the geometric characteristics of the hydrocyclones tested in the course of experimental studies.

Type of the hydro- cyclone	Diameter, mm				Immersion	Height of the	Total height
	hydro- cyclone	Inlet pipe	upper- drain pipe	Lower drain pipe	dept of the upper drain pipe, mm	cylindrical part, mm	of the hydro- cyclone, mm
HC-40-V	40	15	15	10	48	15	525
HC-40-III	40	15	8	5	20	15	470
HC-75-II	75	15	20	18	48	15	730
HC-75-III	75	15	20	10	48	15	730
HC-80-I	80	20	20	10	50	20	745
HC-100-I	100	20	20	15	48	20	1100
HC-100-II	100	20	20	10	48	20	1155

Table 1. Geometric characteristics of hydrocyclones with a diameter of 40-100 mm.

At the second stage, the research of a 75 mm diameter hydrocyclone was carried out. In the course of the studies, the diameters of the upper and lower drain pipes were changed. The geometrical characteristics of the tested hydrocyclones are given in Table 2.

		Diame	eter, mm		Immersion			
Type of the hydro- cyclone	hydro- cyclone	Inlet pipe	upper- drain pipe	Lower drain pipe	dept of the upper drain pipe, mm	Height of the cylindri-cal part, mm	Total height of the hydro- cyclone, mm	
HC-75-I	75	15	20	26	48	15	730	
HC-75-II	75	15	20	18	48	15	730	
HC-75-III	75	15	20	10	48	15	730	
HC-75-IV	75	15	15	18	48	15	730	
HC-75-V	75	15	15	26	48	15	730	
HC-75-VI	75	15	15 10		48	15	730	
HC-75-VII	75	15	10	18	48	15	730	
HC-75-VIII	75	15	10	10	48	15	730	
HC-75-IX	75	15	10	26	48	15	730	

Table 2. Geometric characteristics of 75 mm diameter hydrocyclones.

The effect of oil-containing wastewater treatment from petroleum products, E_p , %, is determined by the formula [28]:

$$E_{p,p.} = \frac{\frac{C_{p,p.}^{sw.} - C_{p,p.}^{ld}}{C_{p,p.}^{sw.}} \cdot 100, \%$$
(1)

where $C_{p,p}^{sw}$ is the concentration of petroleum products in the source water, mg/l; $C_{p,p}^{ld}$ is the concentration of petroleum products in the water from the lower drain

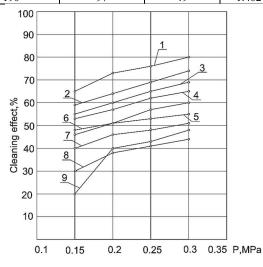
of the hydrocyclone, mg/l.

The effect of purification by mechanical impurities $E_{m.i.}$ %, was determined by the formula [23, 28]:

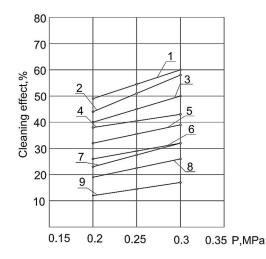
$$E_{m.i.} = \frac{C_{m.i.}^{sw.i-C_{m.i.}^{ld}}}{C_{m.i.}^{sw.i}} \cdot 100, \%$$
(2)

where $C_{m.i.}^{sw}$ is – the concentration of mechanical impurities in the source water, mg/l; $C_{m.i.}^{ld}$ – is the concentration of mechanical impurities in the purified water, mg/l.

3 Results and discussion


Tables 3a-b show the results of studies on the treatment of oily wastewater in pressure hydrocyclones of various diameters.

Type of hydro- cyclone	Waste water temper ature, ⁰ C	Pressure at the inlet to the hydrocyc -lone, MPa	Back pressure at the jet- cyclone drains, MPa	Concentra	The effect of		
				In the sourcew ater, $C_{p,p}^{sw}$.	From the upper drain, $C_{p.p.}^{ud}$	From the lower drain, $C_{p.p.}^{ld}$	cleaning oil products, <i>E_{p.p.},%</i>
1	2	3	4	5	6	7	8
HC-40-III	18.80	0.3	0.05 0.10 0.15 0.20	521 483 492 509	799 827 783 815	162 140 157 173	69 71 68 66
HC-40-V	19.2	0.3	0.20 0.05 0.10 0.15 0.20	484 497 511 490	784 749 785 691	173 111 119 133 137	77 76 74 72
HC-75-II	18.9	0.3	0.05 0.10 0.15 0.20	504 490 488 493	737 743 635 680	141 147 156 167	72 70 68 66
HC-75- III	19.0	0.3	0.05 0.10 0.15 0.20	501 498 486 492	764 787 699 702	159 174 190 207	68 65 61 58
НС-80-І	19.1	0.3	0.05 0.10 0.15 0.20	507 489 495 488	699 673 698 701	177 196 213 224	65 60 57 54
HC-100-I	19.1	0.3	0.05 0.10 0.15 0.20	499 482 522 491	689 671 695 683	190 188 214 211	62 61 59 57
HC-100-II	18.90	0.3	0.05 0.10 0.15 0.20	485 496 508 513	662 650 637 649	175 173 188 307	64 65 63 62


During the second stage of the research, the concentration of petroleum products in the wastewater entering the hydrocyclone for treatment was in the range of 442-2937 mg/l, and mechanical impurities – 82-111 mg/l. The results of studies of wastewater treatment in hydrocyclones are shown in Figures 2 and 3.

Type of hydro- cyclone	Concentration of impuritie		The effect of cleaning by	Consun	Capacity	
	in the source water, $C_{m.i.}^{sw.}$	in purified water, $C_{m.i.}^{ld.}$	mechanical impurities, $E_{mi.}\%$	From the upper drain	From the lower drain	of the hydrocyc lone, <i>l/s</i>
1	9	10	11	12	13	14
HC-40-III	198	77	61	0.292	0.118	0.410
	185	81	56	0.288	0.106	0.394
HC-40-111	202	93	54	0.275	0.101	0.376
	197	97	51	0.259	0.090	0.349
	206	80	61	0.342	0.220	0.562
HC-40-V	204	84	59	0.337	0.201	0,538
	195	84	57	0.318	0.192	0.510
	191	90	53	0.281	0.183	0.464
HC-75-II	193	71	63	0.550	0.841	1.391
	201	80	60	0.543	0.819	1.362
	189	85	55	0.527	0.756	1.283
	196	93	53	0.515	0.672	1.187
	194	66	66	0.931	0.248	1.179
HC-75- III	202	73	64	0.916	0.237	1.164
IIC-75-III	199	86	57	0.872	0.212	1.084
	187	69	63	0.865	0.189	1.054
	192	67	65	0.985	0.269	1.254
HC-80-I	203	67	67	0.958	0.251	1.204
нс-80-1	197	81	59	0.937	0.244	1.181
	195	86	56	0.922	0.226	1.137
НС-100-І	182	67	63	2.427	0.395	2.822
	200	78	61	2.393	0.387	2.780
	198	87	56	1.978	0.381	2.359
	185	91	51	1.869	0.374	2.243
HC-100-II	207	85	59	1.529	1.053	2.582
	189	83	56	1.503	1.045	2.548
	187	90	52	1.490	1.036	2.526
	190	97	49	1.462	1.020	2.482

Table 3b. Results of experimental studies.

Fig. 2. Dependence of the efficiency of oily wastewater treatment for petroleum products on the pressure at the inlet to the hydrocyclone: 1 – HC-75-II; 2 – HC-75-I; 3 – HC-75-III; 4 – HC-75-VI; 5 – HC-75-VII; 6 – HC-75-VII; 7 – HC-75-VIII; 8 – HC-75-IX; 9 – HC-75-V.

Fig. 3. Dependence of the efficiency of oily wastewater treatment by mechanical impurities on the pressure at the inlet to the hydrocyclone: 1 - HC-75-III; 2 - HC-75-II; 3 - HC-75-I; 4 - HC-75-VI; 5 - HC-75-IV; 6 - HC-75-III; 7 - HC-75-VI; 8 - HC-75-VII; 9 - HC-75-IX.

4 Conclusion

The conclusions drawn from this study can be summarized in the following statements. Results of the first stage of research.

It is established that hydrocyclones with a diameter of 40 mm have a high efficiency of cleaning of oily wastewater, but a small capacity, and hydrocyclones with a diameter of 100 mm have a large capacity, but for their effective operation, a greater pressure at the inlet to the hydrocyclone is required. The pressure hydrocyclone HC-80-I has shown a high efficiency of wastewater treatment from mechanical impurities, but has a low efficiency of wastewater treatment from petroleum products. According to the research results, the pressure hydrocyclone HC-75-II is recommended for the treatment of oily wastewater.

The results of the second stage of research:

a) the efficiency of wastewater treatment for petroleum products was 20-80%, and for mechanical admixtures 12-60%;

b) as the pressure increases, the performance and efficiency of the hydrocyclones increases;

c) for the treatment of oily wastewater, it is recommended to use a hydrocyclone of the HC-75-II type.

According to the results of experimental studies, the possibility of sufficiently effective treatment of oily wastewater from machine-building enterprises in pressure hydrocyclones has been established. The geometric parameters of the pressure hydrocyclone for the treatment of oily wastewater are determined. The experimental data obtained were used in the calculation and design of industrial plants HSB-300 with a capacity of 300 m³/day and the hydrocyclone installation-sump HIS-150 with a capacity of 150 m³/day. These installations consist of pressure hydrocyclones HC-75-II and sedimentation tanks of the lower and upper drains, equipped with distribution, collection systems and oil collecting devices.

References

 M.I. Farakhov, A.G. Laptev, M.M. Basharov. Theor. Found. Chem. Eng. 49, 815 (2015). DOI: 10.1134/S0040579515060032.

- Y. Zhang, A. Chen, P. Zhang, Y. Zhou, T. Zhang. WaterScience Technol. 77 (8), 77 (2018). DOI: 10.2166/wst.2018.121.
- E. Torfs, M.C. Martí, F. Locatelli, S. Balemans, R. Bürger, S. Diehl, I. Nopens. Water Science And Technology 75 (3), 39 (2017). DOI: 10.2166/wst.2016.485.
- 4. H. Gao, M.K. Stenstrom. Water Res. 143, 445 (2018). DOI: 10.1016/j.watres.2018.06.067.
- 5. J. Yu, J. Fu. Sep. Sci. Technol. 55, 313 (2020). DOI: 10.1080/01496395.2019.1565772.
- T. Han, H. Liu, H. Xiao, A. Chen, Q. Huang. Chem. Eng. Res. Des. 145, 12 (2019). DOI: 10.1002/cite.2019.00064.
- X. Yang, M.J.H. Simmons, P. Liu, Y. Zhang, L. Jiang. Sep. Sci. Technol. 54, 2959 (2019). DOI: 10.1080/01496395.2018.1548486.
- Sriyono, R. Kusmastuti, S.L. Butarbutar, D.H. Salimy, Febrianto, I.D. Irianto, M. Pancoko, G.R. Sunaryo. J. Phys. Conf. Ser., (2019). DOI: 10.1088/1742-6596/1198/2/022040.
- M. Ghodrat, S.B. Kuang, L. Ji, A.B. Yu. Miner. Eng. 90, 55 (2016). DOI: 10.1016/j. mineng. 2016.03.017.
- 10. A.V. Busarev, A.S. Selyugin, N.S. Urmitova, F.F. Kayumov. Izv. KGASU 2 (36), 15 (2016).
- A. Busarev, A. Selyugin, R. Abitov. Int. Conference «Scientific Res. SCO Countries» Sunergy And Integr. 166, (2019).
- N. Urmitova, R. Abitov, A. Nizamova. *IOP Conf. Ser. Mater. Sci. Eng.* (2020). DOI: 10.1088/1757-899X/890/1/012151.
- X. Wei, M. Kazemi, S. Zhang, F.A. Wolfe. Water Environ. Res. 92, 1695 (2020). DOI: 10.1002/wer.1424.
- 14. M. Coha, G. Farinelli, A. Tiraferri, M. Minella, D. Vione. Chem. Eng. J. 414, (2021). DOI: 10.1016/j.cej.2021.128668.
- A.D.F. Ferreira, D.R.B. Coelho, R.V.G. dos Santos, K.S. Nascimento, F.A. Presciliano, F.P. da Silva, J.C. Campos, F.V. da Fonseca, C.P. Borges, S.E. Weschenfelder. Environ. Sci. Pollut. Res. 28, 12803 (2021). DOI: 10.1007/s11356-020-11265-2.
- 16. P.N. Egbuikwem, J.C. Mierzwa, D.P. Saroj. Bioresour. Technol. 318, (2020). DOI: 10.1016/j.biortech.2020.124200.
- 17. N. Makisha. IOP Conf. Ser. Earth Environ. Sci. (2020). DOI: 10.1088/1755-1315/459/4/042015.
- O. Khalifa, F. Banat, C. Srinivasakannan, F. AlMarzooqi, S.W. Hasan. J. Clean. Prod. 289, (2021). DOI: 10.1016/j.jclepro.2020.125764.
- E. Abdollahzadeh Sharghi, A. Shourgashti, B. Bonakdarpour. Bioprocess Biosyst. Eng. 43, 981 (2020). DOI: 10.1007/S00449-020-02294-9.
- 20. T. Kedrova, L. Khisameeva, R. Abitov. IOP Conf. Ser. Mater. Sci. Eng. (2020). DOI: 10.1088/1757-899X/890/1/012152.
- 21. V.V. Khaustov, V.V. Bredikhin, T.V. Khaustova, IOP Conf. Ser. Mater. Sci. Eng. (2019). DOI: 10.1088/1757–899/687/066063.
- 22. L.A. Nikolaeva. Therm. Eng. 67, 751 (2020). DOI: 10.1134/s0040601520100080.
- 23. A.B. Adelshin, A.V. Busarev, A.S. Selyugin, L.R. Khisameeva. Izv. KGASU 2 (12), 57 (2009).
- 24. S. Oladzad, N. Fallah, B. Nasernejad. Water Sci. Technol. 76, 57 (2017). DOI: 10.2166/wst.2017.185.
- 25. T. Krahnstöver, A. Zenker, M. Baggenstos, B. Kobler, K. Leikam, G. Koch, T. Wintgens. Environ. Sci. Water Res. Technol. **5**, 2172 (2019). DOI: 10.1039/c9ew00658c.
- 26. J. Lee, M. Lee. Water Sci. Technol. 79, 771 (2019). DOI: 10.2166/wst.2019.097.
- 27. S. Verma, A. Daverey, A. Sharma. Environ. Sci. Pollut. Res. 26, 34148 (2019). DOI: 10.1007/s11356-018-3551-4.
- B.M. Gareev, A.V. Busarev, A.S. Selyugin, F.F. Kayumov. Collect. Sci. Pap. X Int. Sci. Conf. Eurasian Sci. Assoc., 48 (2015).