
 

To the question of action on the rods lying on 
elastic foundation, inertial load with a variable 
speed of its movement 
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Abstract. A method for calculating the rods on elastic foundation under 
the inertial load action when it moves at a variable speed is proposed. Test 
problems about a force or load movement with variable speeds along a 
hinged beam and about the movement with a high-speed railway car 
deceleration along a track section modeled by a hinged supported beam of 
great length on an elastic foundation are considered. The selection of the 
elastic foundation material of the rail track determines the dynamics of the 
high-speed railway car in different modes of its movement. To construct 
the methodology, the previously proposed by the author of the article 
solutions are used: a step-by-step procedure for solving the problems of 
unsteady dynamics of structures and the method of "nodal accelerations" to 
take into account the action on structures of a moving inertial load.  

1 Introduction                

The tasks of studying the interaction of high-speed rolling stock and railway tracks remain 
relevant [1-9]. The described method for solving the problems of a moving load takes into 
account any required number of vibration modes in the rod deflection function expansion 
and leads to a resolving system of equations when using an unconditionally stable 
integration scheme with a minimum number of the unknowns, as by the method of integral 
equations when solving problems at a constant movement speed. As the load on the rods, 
concentrated forces, loads and carriages moving at a variable speed are considered. 

2 Problem statement, general formulas and test cases 

At the beginning let us turn to the solution of the classical problem of a load movement 
along a beam on an elastic foundation with a variable speed, and then proceed to the case of 
a more complex load. Further an unconditionally stable step-by-step procedure in time and 
the method of taking into account the action of a massless moving load on rod systems, 
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proposed earlier are used [4]. The cases of uniformly variable motion of the moving load on 
the rods will be considered. 
     The differential equation of vibrations of a beam on an elastic foundation when load P  
moves along it and mass M has the form   
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Here EJ  defines bending stiffness of the beam, 1 ,  are the energy dissipation 

factors, k  is the modulator of subgrade reaction,  tyq ,  is beam deflection, y is length 

coordinate,  )(tsy   is delta function, 2/)( 2
00 wttvsts   defines the law of 

load movement along the beam, 0v  is the load speed at the entrance to the beam, 

wtvv  0  and w  define load speed and acceleration. 

      Deflection of a hinged beam at the moment 1jt  when concentrated force moves along 
it, 

  1)( qMPtsyR    
 can be written as [4,5] 
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     Here  ijq  defines the generalized beam coordinates,  1iW  determine fundamental 

functions, i
~  is bending circular frequency, n  is a number of retained waveforms,  is the 

beam length, 1q defines the vertical acceleration of the load. 

     Assuming   2*2
2/11 /),( dtttsqdq j  , at  2/1 jtt , we can find the total vertical 

acceleration of the load in the form 
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Using (2) and (3) at the step we get [tj,tj+1] 
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    From the conditions of the dynamic balance of the load we find: 

2/112/11   jj qMR                                                 (5) 

after substituting (5) into (4), at the step [tj,tj+1] the equation is 211 /jq  . The expression (2), 
taking into account (5), allows, taking into account the conditions of continuity at the load 
contact point, to calculate the initial conditions of the problem for the next integration step. 
Considering a beam on an elastic foundation, we use a series of test cases for a beam 
without an elastic foundation. 
      The step procedure (2) - (5) is implemented for the uniformly variable movement of the 
load along the beam with the parameters [1- 3].   
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where  0v  and 1v  represent speed, respectively, of the load entry and exit from the beam.  
   Figure 1 shows the nature of the dynamic coefficient increase and decrease 

02/ /ZZZ Dy    depending on the movement speed, determined by the coefficient   

by  3/2/ 01 vv  in (6) and the ratio of the load and the beam masses in (6) at   equal, 

respectively, to the values 3, 2, 1, 0.5 and 0.25 (refer with figure 1), while DZ is the 

greatest displacement of the load and  EJPlZ 43
0 /2   defines static deflection under 

force in the center of the beam at ~ =0 and v = 0v in (6). The results obtained by 
different methods and presented in Fig. 1 and in [3] (p. 210), practically coincide.   
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Fig. 1. The nature of the dynamic coefficient increase and decrease 

    For the next numerical experiment, a beam with the length  =13m  on an elastic 
foundation, with the parameters corresponding to the railway track: E =2.1 810 kN/m2; 
J =0.7 410 m4, k =3.0 410  kN/m2, m =0.15 t/m , i 1 =0,  i ~~

1  =0  by 

~ =0.845m-1 are chosen.  
It should be noted that the proposed method (2) - (5), for M =0, can be used to solve 

the classical problem, motion with variable speed along the concentrated force rod [1]. 

Figure 2 (a, b) shows the following changes: 02/
/ZZZ Dy


  and  02/

~/ZZZ Dy



 

are the dynamic coefficients for displacements DZ  in the center of the beam with an 

equally variable motion of a concentrated force, respectively, with ~ =0 (Fig. 2a) and 

~ =0.845m-1 (Fig. 2b), where  0Z  is static deflection under force in the center of the beam 

at ~ =0 and 0
~Z  by ~ =0.845m-1 (Fig. 2b),  02/

~/~ ZZZ Dy



 are the dynamic 

coefficients for displacements when moving the load at ~ =0  (fig. 2c) and at ~ =0.845m-1 

(Fig. 2e), PPR D /  are the dynamic coefficients for the load dynamic pressure, where 

DP  is pressure under load at ~ =0  (Fig. 2d)  and by ~ =0.845m-1 (Fig. 2f) depending on 
the displacement of the force along the beam, determined by the segments  ξ /tv at 
 =0.5 and  =1 [1]. In all the cases considered in figure 2 (a, b, c, d, e, f) with parameter 

2/vwB  [1] the lines 1 correspond to uniformly slow motion at  2/20vw  ,  

01 v , 01 /2 vt  , 5.0B , 0vv  , and the line 2 accelerated motion at 

2/21vw  ,  00 v , 12 /2 vt  , 5.0B , 1vv  , where 2,1t  is the time of load 

movement, jt =0.0005с, n =45 (by 0 ) and n =150 (by  =0.845m-1) with the 
number of time steps equal to N=1376. To determine the static deflection under the force of 
a beam on an elastic foundation, a tested technique based on the application of a step-by-
step procedure was used, as well as in this article, from [4, 8], where, when solving dynamic 
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problems at the first integration step, for example, equal to jt =10s, and zero initial 
conditions, the doubled static deflection is determined at the corresponding point in the 
structure. Thus, using the algorithm (1.2) - (1.5) for the case of the action of a suddenly 
applied force P , by 0v =w = 0  and 0s = 6.5m  we have at  =1 and ~ =0.845m-1, for the 

considered beam  2/.,СТ = 0.000269 m, which practically coincides with the value 

 EJPZ 3
0

~8/~   for deflection under force at an endless beam. 
The results obtained by different methods for the force movement case and presented in 

Fig. 2 a and in [1] (p. 313), practically coincide. 

 

 

 
Fig. 2 (a, b, c, d, e, f). 
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3 Method for solving the equations for the "car-track" system. 

The algorithm (2) - (4) is easily implemented in the case of movement of a system of loads 

along a beam on an elastic foundation. The expressions of the form (4) when moving N~  

cargo form a system of N~  linear, algebraic equations 

BqRA ~~
2/12/1   jKjko                                                      (7) 

Here BA ~,~ are matrix and vector,  is an identity matrix, koR  is the vector of dynamic 

additions to the static pressure of loads on the beam, Kq  is the vector of vertical 
acceleration of moving loads.  

Let us consider a model for studying the vertical dynamics of the experimental system 
"track-train" for the possibility of studying their interaction. We will further denote this 
system by { 

ohh ee , }( Fig. 3 a, 4), where he  is the rail-beam, on an elastic foundation, 

ohe is railway car. 

 
Fig.  3 (a, b). 

Let us construct a system of equations describing the vertical dynamics of the car 
ohe . 

In this case, we will assume that the initial conditions of the problem are zero, and the 
parameters determining the position 

ohe  in the system **** ZYXO , moving at the car speed 
progressively, are counted from their values in static equilibrium, while at the moment of 
the braking start, a horizontal inertia force is applied to the car body, affecting the vertical 
dynamics of the car (the longitudinal dynamics of the composition is not considered). Then 
for  

ohe   we have 

  RRRKCM qqq ,
ccc

                                (8) 

Here  cq is the vector of independent generalized coordinates defining 
ohe  in the 

system **** ZYXO , M ,  KC ,  are the matrices of masses, damping and stiffness for 

ohe  [8], *  is the vector connection matrix   R and R , R  is the vector of dynamic 

additions to static reactions at the points of contact 
ohe  with carriageway (with rail - beam 

he  and a churlish railroad body outside he ).  
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3 Method for solving the equations for the "car-track" system. 

The algorithm (2) - (4) is easily implemented in the case of movement of a system of loads 

along a beam on an elastic foundation. The expressions of the form (4) when moving N~  

cargo form a system of N~  linear, algebraic equations 

BqRA ~~
2/12/1   jKjko                                                      (7) 

Here BA ~,~ are matrix and vector,  is an identity matrix, koR  is the vector of dynamic 

additions to the static pressure of loads on the beam, Kq  is the vector of vertical 
acceleration of moving loads.  

Let us consider a model for studying the vertical dynamics of the experimental system 
"track-train" for the possibility of studying their interaction. We will further denote this 
system by { 

ohh ee , }( Fig. 3 a, 4), where he  is the rail-beam, on an elastic foundation, 

ohe is railway car. 

 
Fig.  3 (a, b). 

Let us construct a system of equations describing the vertical dynamics of the car 
ohe . 

In this case, we will assume that the initial conditions of the problem are zero, and the 
parameters determining the position 

ohe  in the system **** ZYXO , moving at the car speed 
progressively, are counted from their values in static equilibrium, while at the moment of 
the braking start, a horizontal inertia force is applied to the car body, affecting the vertical 
dynamics of the car (the longitudinal dynamics of the composition is not considered). Then 
for  

ohe   we have 

  RRRKCM qqq ,
ccc

                                (8) 

Here  cq is the vector of independent generalized coordinates defining 
ohe  in the 

system **** ZYXO , M ,  KC ,  are the matrices of masses, damping and stiffness for 

ohe  [8], *  is the vector connection matrix   R and R , R  is the vector of dynamic 

additions to static reactions at the points of contact 
ohe  with carriageway (with rail - beam 

he  and a churlish railroad body outside he ).  

 

We will assume that the car braking when moving at a constant speed along the rail-
beam (Fig. 4) occurs at the moment *t , when the first wheelset of the carriage reaches the 
middle he , while at the moment *t  an inertial pair of forces is applied to the car body 

( ) ( )inert cabМ M w L   (refer with Fig. 4), where ( )cabM is wagon body weight, L – is 
the vertical distance from the body mass center to the wheelset axle. Let us introduce into 
consideration the following: *P  and okR  are vectors of static pressures of wheelsets 

ohe  

on the carriageway and the corresponding dynamic additives to them, kcq  is a 

displacement vector of the car wheels (sub-vector cq ), koq  is a vector of displacements of 
the carriageway at the points of contact with it of the car wheelsets. Let us select the sub-
vectors from kcokok qqRR ,,,  , respectively, 

kcokok qqRR ,,,  , responsive at the 

entrance to the interaction of wheelsets 
ohe  only with he , where 

RR ,ok  are the dynamic 
additives to static wheel pressures and additives to wheel reactions,  


kcok qq , are the beam and wheel displacements on the beam-rail. At any given time, 

the elements of the vector koq , related to the carriageway outside he , remain zero, and 

when the car moves along he  the continuity conditions of displacements and velocities are 

met  
kcok qq  ,    kcok qq   as well as the conditions of equilibrium in the moving nodes 

(at the points of contact of the wheels with the rail - a beam on an elastic foundation). 

0 
 RR ok                                                       (9)  

 
Fig.  4. 

For the rail-beam he , along which the carriage moves, at a step [tj,tj+1]  the following 
equation can be written 

BqERA 
  o

jk

o
jk 2/102/10

                                         (10) 

Here А is a matrix characterizing stiffness, dissipative and inertial characteristics he , Е 

is an identity matrix, B   is the vector taking into account the initial conditions for he  in the 

moment tj and the action on the moving forces *P  and okR  carriageway system. 
Let us carry out discretization (8) in time (j = 0,1,2...), using the step-by-step procedure 

from [4, 8], as a result, we have  
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Let us select a subsystem of equations corresponding to the sub-vector on the left-hand 
side  2/1kjcq   from (11); further we will express this subsystem with respect to the vector 
of dynamic additions to the static reactions of the wheels, presenting it in the form: 

LqWR o
  o

jok

oo
j 2/12/1

                                           (13) 

R  (a) 
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Let us select a subsystem of equations corresponding to the sub-vector on the left-hand 
side  2/1kjcq   from (11); further we will express this subsystem with respect to the vector 
of dynamic additions to the static reactions of the wheels, presenting it in the form: 
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The vectors o
koR , o

R  from (10) and (13) are substituted to (9) the as a result, we have 
a resolving system of equations at the step [tj,tj+1] 

   DqD oo

jok





2/1
                                                   (14) 

,1 WAD o            LBAD oo  1 where D , oD  are the matrix and vector characterizing 

at step [tj,tj+1]  movement of the "car track" system. 
Let us trace the progress of the entire problem solution for j= 0,1,2,... On the step [tj,tj+1] 

under the initial conditions of the problem at the time tj is determined using (14), the vector 
o
koj 2/1q , then, using (13), (12), and (2), the fields of displacements, velocities, and 

reactions for the system { 
ohh ee , } in the moment tj+1 . Then the process is repeated. 

4 Numerical simulation results 

The step-by-step procedure (14) is implemented for a high-speed train from [6] when 
moving along the experimental track section. The system { 

ohh ee , } consists of a rail-beam 

on an elastic foundation with a length  =108 m and a car simulated by a mechanical system 
with 10 degrees of freedom, consisting of rigid bodies with elastic-viscous constraints, 
describing the vertical dynamics of the car during high-speed movement with variable 
speed, including emergency. Path parameters, as in the first part of the article, for a path 
segment with the length  =13m, when studying the dynamics of the system { 

ohh ee , } 
coincide, taking into account the energy dissipation in the system at  6 kNs/m2; k= 

30000kN/m2; 01  . The inertial and elastic-viscous parameters of the car are selected 

from [6]. To test the system { 
ohh ee , }operation, an additional numerical experiment was 

carried out. The problem was considered for determining the support reactions of the car at 
v =0 and its support on a rigid base and the action of a moment suddenly applied to the 
body, equal to the inertial moment when the car is braking. As a result, Fig. 3b shows the 
changes over time t (c) dynamic reactions iR  (kN) the first and fourth wheelsets. When the 

car is moving, its position on the track section is determined by the segment )(ts  (Fig. 4), 
and, accordingly, for the fourth wheel pair by the segment s4. The system of equations (14) 
changed its order from 1 to 4 in the process of numerical implementation, when the car was 
moving at a speed 0v  250 km/h and from the beginning of the car braking at the moment 

when s =0.5   and  2w m/s2 [7]. The dynamic addition change R (kN) of the fourth 
wheelset of the car to the static pressure of this wheelset equal to P =170 kN depending on 
)(ts is shown in Fig. 5a. Fig. 5 (b,c) shows, respectively, when the car is moving, 

depending on t  and )(ts  (Fig. 4) the vertical displacements: fourth wheel 4q  [m] (line 1) 

and the middle of the rail-beam on the elastic foundation bq1  (line 2) (Fig. 5b) and the 

center of mass of the car body q [m] (line 1) and the corner point of the car A  (Fig. 4 (line 

2) (Fig. 5c)). Integration step jt  by п = 580 in (4) was chosen equal to jt = 0.00072s, 
with the number of steps N = 2160 to implement the procedure (11) - (14). It should be 
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noted that the expected coincidence of the graph ordinates in Fig. 5b, corresponding to the 
moment when the fourth wheel of the car reaches the middle of the experimental section of 
the rail at s = 75.4 m. The process emergence of unloading the fourth wheelset (in the form 
of a drop in the value of the dynamic additive R to the static reaction of the wheel (see Fig. 
4a), which coincides in magnitude with the result shown in Fig. 3b, and caused by the action 
during braking of the inertial pair )(инM (Fig. 4), at the moment the car starts braking should 
also be noted. 

5 Conclusion 

The proposed method makes it possible to investigate the action of a movable inertial load 
with a variable movement speed on the rods on an elastic foundation, under various 
boundary conditions, while applying the corresponding fundamental functions using the 
step-by-step procedure proposed in [4]. Applied to the problems of railway transport, the 
method allows to investigate the interaction process (Fig. 5c) in the system "car - track" at 
different speeds of the train in the modes of the beginning of braking or its acceleration, at 
any position along the track section and the possible presence of various irregularities [5, 8].  
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