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Abstract. The use of high-pressure pipelines for the transportation of oil 
products, natural gas, water requires ensuring the trouble-free operation of 
these structures during the operation period. The reliability and strength of 
pipelines determines their operational and economic reliability. Obviously, 
the presence of microdefects in pipelines material leads to a decrease in 
their strength. In the vicinity of microdefects, the process of material 
destruction is possible, leading to a loss of strength, which is accompanied 
by the destruction of structures and, as a consequence, economic damage, 
environmental deterioration. The study is aimed at developing the 
approaches and methods for increasing the economic and operational 
reliability of pipeline facilities by improving the acoustic methods for 
fixing microdefects in the used construction material. Improvement of 
acoustic methods for detecting microdefects in viscoelastic materials of 
pipelines can be carried out by developing mathematically refined models 
of the cylindrical shells’ dynamics, taking into account real physical and 
mechanical characteristics, leading to more accurate parameters of 
combined nonlinear waves. Such models are nonlinear and are built taking 
into account the real hereditary properties of the material, the possibility of 
developing large strains in the material.  

1 Introduction  

Pipelines modeled by cylindrical shells are made of a material that may have inherited 
nonlinear physical and mechanical properties. 

The trouble-free operation of pipelines under load depends on the material strength and 
determines the reliability of the structures. Improving the operational reliability of such 
structures is an urgent scientific problem. 

One of the options for its solution is the improvement of non-destructive acoustic 
methods for diagnosing microdefects by mathematical modeling of the deformation waves 
appearance in cylindrical shells, which takes into account the viscoelastic physical and 
mechanical properties of the material and uses strict methods of mechanics heredity. 

By experimentally measuring the velocity of a deformation wave in a cylindrical shell 
simulating a pipeline using nonlinear acoustic methods and comparing the measurement 
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result with theoretically calculated values of velocities using the mathematical models that 
take into account the creep of materials, it is possible to locate microdefects in the vicinity 
of which the pipeline destruction under the influence of force loads can develop. 

Therefore, the problem of determining more accurate values of the deformation wave 
velocity in a cylindrical shell using deformation models that take into account the creep 
properties of the material is urgent.  

2 Relevance of the research 

The economic and operational reliability of pipeline structures is highly dependent on their 
strength, which can be reduced due to the existence of microdefects in the structure. A 
decrease in strength can cause a loss of bearing capacity, destruction of a structure, 
accompanied by economic damage, environmental degradation. 

Therefore, the improvement of acoustic search for microdefects in pipeline material 
using nonlinear mathematical models of deformation waves in cylindrical shells, taking into 
account their real physical and mechanical properties and determination of the specified 
wave parameters used in acoustic diagnostics, determine the relevance of the study. 

3 Methods  

The basis for increasing the reliability of pipelines is the material microdefects’ acoustic 
detection improvement according to the refined wave characteristics obtained by 
mathematical modeling of nonlinear viscoelastic deformation waves in cylindrical shells. 

The mathematical model of the wave process in a shell is constructed using rigorous 
methods of heredity mechanics, specifying the displacement fields of the medium points, 
Green tensor, the variational principle of mechanics, nonlinear properties of viscoelasticity 
and an asymptotic method for simplifying the equations describing deformation waves in 
the shell. 

We will assume that the model of the pipeline is an infinite cylindrical shell. Let it have 
a thickness h and a radius R. We introduce a cylindrical coordinate system: we take the 
generatrix of the shell middle surface as the x axis, the tangent to the axial section as the y 
axis, and the normal to the middle surface of the cylindrical shell as the z axis. Let us 
suppose that external forces do not act on the shell (Fig. 1).  

 
Fig. 1. Endless cylindrical shell 

Using the Kirchhoff - Love hypothesis and neglecting the inertia of rotation leads to the 
following tensor of large deformations of the middle surface shell [1]: 
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where W,V,U  are the components of the points displacements vector along the axes 
.z,y,x  The variable z is the distance from the median surface to an arbitrary point in the 

shell layer, the value 
R
1Ky   specifies the shell curvature.  

Let us set the physical and mechanical properties of the shell material by the equations 
of the linear theory of heredity, assuming volumetric deformations to be linearly elastic [2]: 
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We use the expansion of the deformation components ;ex ;ey   in Taylor series by the 

degrees )t(  , Let be 1t  , i.e., hereditary properties of the shell material quickly 
decay over time.  

Leaving two terms in the expansion and dropping the superscript z in the Taylor series, 
we establish the following relationships between stresses and strains 
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Substituting the components of deformations (1) into (3), we determine the components 
of the stress tensor, expressed through the shell displacements: 
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Calculating the forces and moments in the shell element using the formulas [1]: 
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We write down the shell motion equations [1] 
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in which we take into account the expressions for the efforts and moments, then the first 
equation of motion will take the form 
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and we obtain the second from the first by replacing U  for V , x  for y , V for U , y  
for x .  

The third equation of the shell motion in displacements takes the form: 
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Let us simplify the equations of motion, neglecting the terms in them higher than the 

second order of smallness, we obtain: 
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The system of nonlinear (4) - (6) describes longitudinal deformation waves in a 

geometrically nonlinear viscoelastic cylindrical shell.  
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The system of nonlinear (4) - (6) describes longitudinal deformation waves in a 

geometrically nonlinear viscoelastic cylindrical shell.  

 

Let us simplify the system by asymptotic methods, transforming the relations (4) - (6) to 
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This corresponds to the smallness of the shell thickness h  compared with R . 
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Where 1c  – is an unknown quantity. 
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Multiplying the equation (11) by ),
6

( 1  then differentiating it by   and taking 
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we obtain an expression, subtracting from which the equation (9), we determine the 
evolutionary equation of motion for a cylindrical shell 
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. 

4 Results  

Increasing the reliability of pipeline structures by improving the acoustic diagnostics of 
microdefects in the material can be achieved by building new mathematical models that 
describe the wave dynamics of a cylindrical shell made of a viscoelastic material. 

On the basis of a more accurate relationship between the geometric, physical-
mechanical and dynamic characteristics of the shell deformation process, more stringent 
values of the longitudinal deformation wave velocity in the shell are determined, which 
make it possible to increase the accuracy of detecting invisible microdefects of the material. 
As a result, it is not allowed to use defective products in construction practice, i.e., the 
reliability of the pipelines under construction increases. 

5 Conclusion 

It was found that the effect of compensating for nonlinear dispersion properties and 
dissipation forms longitudinal solitary deformation waves in the shell, and their speed 
increases with increasing amplitude. Thus, the property of the material shell deformation 
process nonlinearity cannot be neglected, otherwise significant errors are inevitable arising 
from the use of linear models, which do not represent the possibility of detecting such an 
effect even at a qualitative level. 

The more accurate dynamic characteristics of the wave process in a viscoelastic 
cylindrical shell obtained in the study make it possible to improve the acoustic methods for 
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searching for invisible microdefects in a material. 
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