
Digital phenotyping technologies: an emerging 
tool in genomic selection and animal welfare 
science? 

Eugenia V. Solodneva1,2*, Aleksei K. Piskunov1, Yury Stolpovsky1,*, and Sergey Kuznetsov1 

1Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333, Moscow, Russia 
2Department of bioinformatics and systems biology, Moscow Institute of Physics and Technology 

(MIPT), 141700, Moscow region, Dolgoprudny, Russia 

Abstract. Farm animals provide about 30% of humanity’s food 

requirements [1]. The world's population's demand for animal products is 

expected to keep growing. New technologies in animal husbandry can make 

it possible to meet this demand and to reduce its impact on the environment. 

Genomic selection plays a key role in this process as a promising and safe 

method for improving genetic qualities of farm animals. Before the 

widespread of genomic selection, high cost of genotyping was the main 

factor holding back an improvement of animal farming. However, today, the 

bottleneck in genomic selection is a limited amount of high-quality 

phenotypic data, which is still either difficult or too costly to obtain [2]. New 

technologies in animal phenotyping become of special attention. The current 

paper reviews the next-generation technologies in animal phenotyping and 

revels the main challenges limiting its widespread in the example of dairy 

cattle. 

1 Advances in phenotyping technologies 

Herd books and manual performance records were the principal tool in breeding programs in 

pre-genomic era. In 1905 the first association to record the volume and the fat content of the 

milk obtained from cattle was formed in the United States. Currently, manual assessment and 

entry of phenotypic data tends to be replaced by automated recording with radio sensors and 

systems for collection and analysis of biological samples making it possible an automized 

recording of productivity, feed conversion, health, fertility, pregnancy, calving ease, 

temperature adaption, potential impact on climate and even of indicators of an experienced 

stress [3]. This information is subsequently used to reveal possible relationships between 

genomic data and phenotypic traits in order to improve the accuracy of genomic-estimated 

breeding values. 

These methods can also serve for improving the management of high-performance 

industrial dairy herds [4]. The new sensors are recording health indicators (lameness, disease 

symptoms), animal welfare and their productivity (fat, protein, lactose, urea nitrogen in milk) 

and environmental data (feed composition, temperature) in real time [5]. This information 
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can be of great importance for consumers providing them an opportunity to track the quality 

of food at the level of raw materials [6]. The experience of the "Red Tractor" company (UK) 

can serve an example of successful monitoring of the quality and the traceability (production 

history) of foods (https://www.redtractor.org.uk/). 

Currently, manufacturers in Canada record 8 health indicators: mastitis, metritis, delayed 

placenta, cystic ovaries, lameness, hypocalcemia, ketosis and abomasum displacement. In 

order to standardize disease reporting, disease definition guidelines were provided to 

manufacturers, being adapted from David F. Kelton's Recommendations for Recording and 

Calculating the Incidence of Selected Clinical Diseases of Dairy Cattle [7]. 

Mastitis is recognized as the most cost demanding health problem in dairy cattle. The 

incidence of mastitis is still high worldwide despite a great attention being paid to the 

problem. In Canada in 2008, the incidence of mastitis was recorded at 23% [8], in the UK - 

at 14, 21 and 26% in the first, second and third lactations, respectively [9] and in France it is 

observed as 10, 13 and 14% in the first 3 lactations in the Montbéliard, Norman and Holstein 

breeds respectively [10]. The relatively slow decline in the incidence of mastitis, as compared 

to other economically relevant diseases, may be, at least partially, explained by an intense 

selection for milk production which negatively correlates with udder health. 

Since the late 1970s, the Somatic Cell Count (SCC) in milk samples was the main 

indicator of mastitis. An increase in SCC occurs mainly due to the leukocyte’s recruitment 

in response to udder infection and is closely related to the extent of the inflammatory process. 

Recently, the electrical conductivity of milk samples, the udder skin temperature obtained 

from thermal imaging camera, along with the "omics" data were proposed as the new methods 

in diagnostics of mastitis in cattle [6]. Another effective method for recording a variety of 

phenotypic data is an analysis of milk spectrum obtained in the mid-infrared range (MIR - 

mid-infrared). An absorption spectrum obtained by transmitting infrared light through a milk 

sample serves as predictor of various phenotypes. In addition to the traditionally used 

indicators of milk quality, the analysis determinates fatty acids composition, lactoferrin, 

minerals and key technological properties of milk, such as coagulability, protein 

composition, acidity and citrate content [11]. Besides, MIR spectrum analysis was shown to 

be an effective tool in assessing fertility, pregnancy, health scores, energy balance, feed 

conversion and methane emissions [12]. A high fat-to-protein ratio, for example, has been 

suggested as an indicator of negative energy balance, which leads to the development of 

ketosis, ovarian cystosis, mastitis, lameness, and abomasal displacement [13]. 

Non-invasive assessment tools can shorten assessment time and minimize animal stress. 

In particular, an exterior parameter can be obtained using a depth sensor and processing the 

photographic image of the animal. The main body measurements: height at the withers, 

height of the croup, depth of the chest, width of the chest, width of the croup, length of the 

croup, length of the body, girth of the metacarpus, can be estimated with an accuracy of 1 

mm and an error of about 2% [14]. When using the Light Detection and Ranging sensor and 

subsequent obtaining a three-dimensional digital model of the animal, an accuracy of the 

main parameters is up to 2 mm, and the error is close to 2% [15]. 

An amount of phenotypic information is constantly growing. Meanwhile, the data 

collection might be irregular and differs in its format and structure. All digital data needs to 

be integrated into a unique system for further analysis, interpretation and visualization. Thus, 

there is a growing demand for the development of statistical analysis methods and 

visualization tools, as well for the usage of artificial intelligence and machine learning tools 

for the data transmission, storage and processing [16]. 

Moving on to other problems in high-performance phenotyping, it should be noted that 

there is no legal framework that could regulate an effective collection and usage of this 

information to improve the efficiency of animal husbandry in general. In order to avoid 

confusion in the definitions used to describe phenotypes, it is recommended to use carefully 
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selected vocabularies such as Ontology of Animal Product Traits 

(https://www.animalgenome.org/bioinfo/projects/lpt/) [16]. 

One of the main issues in collecting phenotypic data is the question of its recoupment, 

since the supplier of the product must reimburse the costs of introducing the necessary 

technologies. Many traits can have a direct economic value, for example, dairies often pay 

extra to producers for low levels of somatic cells in milk, for high fat and protein contents 

[17]. In an example of A2-kasein containing milk [18] becoming generally recognized as 

much safer product, the factories are ready to pay extra to producers for such milk, and 

producers, in turn, are ready to introduce technologies for identifying allelic variants of the 

beta-casein gene. However, it may not have a direct economic value. The challenge is to 

encourage dairy producers to provide such data [19]. It is of the fundamental importance that 

the manufacturers understand that the progress in selection depends on the registration of 

both traditional and new phenotypes. One option about encouraging the breeders to collect 

new data on phenotypes is to provide significant discounts on animal genotyping. An 

example of such a program is the “Milk recording program” used in the USA (national milk-

recording programs). The members receive discounts on animal genotyping [19]. The US 

government costs for production data collection is about $ 50 million per year [20]. Some 

companies create their own phenotype supplier network through farms that have commercial 

agreements with them (Immunity Plus from Semex and Wellbeing from Zoetis). The 

phenotype database plays a special role in determining the economic indicators of the value 

of an animal. 

2 Economic indices and breeding strategies 

Estimates of the economic value of animals are widely used throughout the world. 

Specifically, in the US, the first selection index introduces was by the US Department of 

Agriculture was Predicted Difference Dollars (PD $). In 1926, it included milk and fat yields 

only [21]. Today, the Net Merit Dollars (NM $) includes a combination of 36 individual traits 

[21]. Selection indices are usually used to combine information on many traits associated 

with profitability in a single value [19]. It is worth noting that selection indices should be 

periodically updated to include new traits and relevant information about the relationships 

between them obtained from genomic research, and should also reflect changes in economic 

conditions and technologies (i.e., industrial or organic). 

Selection indices differ both between countries and within one country due to the 

difference in economic conditions, registered traits and breeds used. For example, the 

Australian Dairy Herd Improvement Program prefers performance indicators, while Canada 

favors the exterior ones. In Denmark, Finland and Sweden the most attention is paid to 

somatic cell count and calving traits [17]. Economic indices for different breeds take into 

account different indicators; in addition, the same indicators may have different weights. For 

example, Ideal Commercial Cows for Holsteins estimates milk yield at 5 points, while the 

national overall NM $ index estimates this at 1 point [21]. Currently, in the United States, 

Holstein cows are evaluated according to 42 economic indicators, including 5 indicators of 

productivity, 8 indicators of health, fertility and longevity, 6 direct measures of health, 5 signs 

of calving and 18 exterior traits [19]. 

There is a growing interest in individualized indices at the farm level. An example is the 

North Florida Holsteins dairy farm (Bell, Florida, USA) that uses its own individual index to 

rank the animals (10000 cows). Differences in breeding purposes should be also taken into 

account. In order to provide farmers with valuation options tailored to their needs, Council 

on Dairy Cattle Breeding (CDCB) journal publishes 4 different indices (lifetime net merit, 

fluid merit, cheese merit, and grazing merit). An introduction of a general economic index, 

as a weighted sum of sub-indices, is now increasingly discussed [21]. 
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One of the main challenges in modern breeding is to find a balance between increasing 

productivity while monitoring health and fertility indicators (as in above-mentioned example 

of balancing milk productivity and mastitis incidence). Economic goals are serving as a 

guideline in these cases [22]. 

 

Main genes and corresponding traits that can be used or are already being used to derive 

the economic indicators in cattle are listed below. 

Health: 

- FANCI -  the development of a short spine (brachyspina) 

- ITGB2 - reduced resistance to bacterial infections (leukocyte adhesion deficiency) [18] 

- APOB HCD - cholesterol deficiency 

- SLC35A3 - complex vertebral malformation  

- UMPS - deficiency of uridine monophosphate synthase  

- LRP4 - syndactyly (mulefoot) 

- ASS1 - metabolic disorder (citrullinemia) 

- HLZ and LSS - mastitis resistance [23], [24]  

- HBD3 and SP110 - tuberculosis resistance 

- APOL1 - trypanosomiasis resistance [25] 

- BoLADRB3 - leukemia resistance. 

*It should be noted that climate change entails a change in the habitats of some cattle 

pests [26], which may cause a demand for the inclusion of new traits in selection programs, 

for example, resistance to ticks [17]. 

Productivity: 

- MSTN, MRC2, RNF11, WWP1 and ATP2A1 - muscle development 

- DGAT1, GHR, CSN2, CSN3, CSN1S1, CSN1S2, LALBA, LGB, FAT1 and ABCG2 - 

milk yield and milk composition. 

*Allelic variants of some genes which cause an increase in some indicators of 

productivity may negatively correlate with other indicators. For example, the K232A variant 

of the diacylglycerol O-acyltransferase 1 (DGAT1) gene leads to an increase in fat yield in 

cows, but at the same time to a decrease in protein yield in milk amount [27]. The myostatin 

gene (MSTN) increases muscle mass in heterozygous animals, but causes difficulties in 

giving birth to mothers of homozygous calves. 

Fertility 

- TTF1, RABGGTB, RNF20 - miscarriage 

- ARMC3 - shortening of sperm flagellomania. 

Separately, haplotypes associated with cow fertility can be distinguished. For example, 

the haplotypes in the Holstein breed are: 

- APAF1 - HH1, SMC2 - HH3, GART - HH4, TFB1M - HH5, SDE2 - HH6, CENPU - 

HH7 

Adaptation: 

- PRLR [28], ATP1A1 [29], HSPB7 [30] - heat resistance. 

- MSANTD4, GRIA4, AQP5, RETREG1, RPL7, HDAC3 и SYK - cold resistance [31], 

[32] 

3 Next-generation phenotyping systems in animal welfare 
science 

An attention paid to farm animals’ welfare increased significantly in the last few years.  

Meanwhile one can consider the economic purposes to be the main source of this interest, it 

should be also noted that a notable proportion of relevant publications was made in the area 

of fundamental sciences. Herein, its likely to be inspired by recent works that confirmed that 
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farm animals’ cognition is much more complex than it was generally believed before and by 

the new finding in genomics that showed convergent evolution of human and farm animals 

neurochemical systems [33]. Just recently a homologous mechanism underlying  such a 

complex traits as human autism-like behavior was found in cattle [34].    

Currently a great effort is being made to develop reliable and valid methods to access 

farm animals’ welfare. They include measuring cortisol and its metabolites, acute phase 

proteins, serotonin and some other molecules (in plasma, hairs or saliva), monitoring of 

activity via GPS and accelerometer sensors, infrared thermography, electroencephalography, 

heart rate variation and other measures of sympathetic-vagal activity [35].    

Notably, various researchers emphasize that its important to track positive states and 

emotions along with negative ones moving toward the consideration of “animal happiness” 

where emphasis has shifted from concern about negative aspects of animal welfare to the 

positives [35], [36]. The last ones appear to be more difficult to measure, especially due to 

the absence of reference indicators. However, evidence of pleasure can be based on behaviors 

such as social interaction, reproductive activity, play, self-grooming, anticipatory 

hyperactivity, and exploration. Facial emotions recognition is also proposed as a method to 

track positive states, with a wild animal behavior serving as a reference tool. A drug usage 

could be somewhat doubtful ethically but physiologically reasoned method to define the signs 

of positive state and pleasure in animals. 

4 Conclusion  

The amount of genomic, transcriptomic and metabolomic data has risen exponentially in 

animal science over the last decade. However, in order to serve for breeding purposes these 

data has to be combined with the reliable descriptions of phenotypes. Lack of phenotypic 

information represents now the main bottleneck in genomic selection. Gathering such a data 

is still considered to be an expensive, time- and labor-consuming process. Recently, a number 

of next-generation methods were developed to facilitate phenotypes recording. Most of them 

implement an automatized intellectual processing of information obtained from various 

biosensors, photo and video cameras, and robotized equipment for biological samples 

collection and analysis. These systems are extremely useful to monitor animals health and 

welfare that may be affected by an intense selection aimed at improving economically 

important traits that still are the main indicators in breeding strategies. Non-invasive 

assessment tools can shorten assessment time and minimize animal stress.  The main 

challenges to be overcome in the widespread of these technologies include the development 

a unified methodology for retrieving, transferring and storing information, including both 

genotypes and phenotypes. Herein, a special attention should be paid for artificial intelligence 

methods based on machine learning as well as for providing support for those producers who 

introduce new evaluation methods. 

This research was funded by RSF (http://rscf.ru/en/), grant number 19-76-20061. 
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