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Abstract. Control valve stiction is a common problem faced by the process industries, which can have a 
strong adverse effect on the profitable operation of plants. Although various stiction detection methods based 
on neural networks have been proposed, few of these studies have considered the performance of stiction 
detection based on the use of 2D representations of the process signals. In this paper, such an approach is 
proposed, based on the use of a pretrained convolutional neural network, AlexNet. The proposed 
convolutional neural network stiction detection (CNN-SD) method showed highly satisfactory performance, 
which can be further applied on real industrial data. 

 

1 Introduction 
 
A typical process plant consists of hundreds of control 
loops that are operating regularly [1]. Continuous 
mechanical movement of the control valve causes it to 
deteriorate owing to wear and tear. Consequently, 
nonlinear behaviors of control valves occur, such as 
stiction, deadband, backlash, and dead zone phenomena. 
Among all these oscillatory problems, stiction is the 
most common and long-standing problem in the process 
industries [1]. The presence of oscillation in process 
variables may cause high rejection rates and inferior 
product quality, which significantly reduces plant 
productivity [2]. As reported by [3], 30% of industrial 
oscillatory loops are caused by control valve problems. 
Hence, prior to breakdown maintenance of the plant, 
prompt detection of control valve stiction is crucial for 
mitigation action to be taken. As a result, financial loss 
owing to shutdown maintenance of the plant can be 
prevented. 
 

Considerable research has been done with regard to 
control valve stiction detection. These approaches can 
be categorized as cross-correlation function-based, limit 
cycle pattern based, nonlinearity detection based, and 
waveform shape based [4]. Most of the detection 
methods proposed are based on the relationship between 
process variables (PV) and controller outputs (OP) due 
to the difficulties in observing manipulated variable 
(MV). Various detection methods based on neural 
networks have been proposed, such as NLPCA [5], 
ANN [6], NLPCA-AC [7], and SDN [8]. These methods 
consider the time series input directly as 1D signal. More 

recently, methods considering the time series input in 
2D have been proposed [9]. Signals in 2D can take 
advantage of a large and powerful library of feature 
extraction methods. In addition to this, these approaches 
have been driven by advances in computer vision, 
particularly related to deep learning.  

 
To date, few of these approaches have been applied 

to the problem of stiction detection. Recently, [10] have 
proposed a method that uses the simulated MV-OP plots 
as images to train the CNN for stiction detection. 
However, this method shows inconsistent stiction 
detection rate ranging from 68.3% to 96.8%. In addition, 
this method was only tested on stiction and oscillation 
cases, while the other deadband, no offset, well-tuned, 
and excessive integral were not tested. Hence, the other 
cases are included in this current study.  
 

In this paper, the proposed convolutional neural 
network stiction detection (CNN-SD) method used 
simulated data from seven different cases to retrain a 
pretrained CNN, AlexNet. A pretrained convolutional 
neural network, AlexNet, was used as a feature 
extraction tool and classification tool for this purpose. 
Since MVs are frequently unmeasured and difficult to 
obtain [4], the method proposed here provides an 
alternative for using PV and OP data to generate images 
for stiction detection. In addition, the differences 
between features extracted directly from a pretrained 
CNN and from a retrained CNN are compared as well. 
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2 Control valve stiction 
 
As shown in Figure 1, a typical input-output behaviour 
of sticky valve consists of four main components: 
deadband, stickband, slip-jump, and moving phase. The 
occurrence of the stiction as depicted in Figure 1 can be 
described as follows: 
• (A-C) - The MV remains constant even when the 

OP increases as it could not overcome the static 
friction, which corresponds to deadband and 
stickband. 

• (C-D) - Once it overcomes the static friction, a 
sudden jump of the valve occurs, which 
corresponds to slip jump. 

• (D-E) - The valve position increases linearly until it 
stops and sticks again. 

• (E-F-G-A) - Similar behaviour can be observed 
when the controller output changes its direction. 

 
Fig. 1. Typical input-output behaviour of sticky valve adapted 
from [5]. 
 
3 Methodology 
 
The structure of the proposed CNN-SD framework is 
presented in Fig. 2. Firstly, the time series data (PV-OP) 
from control loops are preprocessed by normalizing 
them into zero mean and unit variance. A fixed window 
of specific length length l and step size b is moved over 
the PV-OP data to cut them into batches. The segmented 
time series data are subsequently transformed into 
matrix plots (or known as images) using unthresholded 
reccurrence plots (URP). These images formed will then 
be fed into a partially retrained CNN (AlexNet) for 
either feature extraction or classification purpose. It 
should be noted that the AlexNet is partially retrained 
with simulated data before serving as feature extraction 
tool and classification tool. Prior to applying AlexNet, 
each images must be resized to 227x227x3. 
Consequently, a classification output of either stiction or 
non-stiction will be produced for each input image. Else, 
feature vectors can be extracted from trained AlexNet 

which would serve as predictors for classifier 
development. 

 

Fig. 2. Workflow of the proposed CNN-SD framework. 

3.1 Preprocessing 

The first step of the proposed CNN-SD is to acquire data 
and preprocess them accordingly. Appropriate 
preprocessing steps can help to improve the quality of 
the data, as well as to enhance accuracy of classification 
framework. In this paper, the raw time series data (PV-
OP) acquired are preprocessed through z-normalization. 
For example, given a time series X = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, X 
can be normalized to zero mean and unit variance 
through equation (1). 

 
𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 =

𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 − 𝜇𝜇𝜇𝜇𝑋𝑋𝑋𝑋
𝜎𝜎𝜎𝜎𝑋𝑋𝑋𝑋

 (1) 

where 𝜇𝜇𝜇𝜇𝑋𝑋𝑋𝑋  is the mean of X and 𝜎𝜎𝜎𝜎𝑋𝑋𝑋𝑋  is the standard 
deviation of X. 

3.2 Segmentation 

A moving window segmentation is often required when 
deal with a huge time series dataset in order to process 
the data in batches. The time series is initially segmented 
into 𝑚𝑚𝑚𝑚 windows with window length, l respectively. A 
step size, b, is then specified to determine the movement 
of the window across the time series. The selection of an 
optimal window size is important. Too small a window 
size will cause loss of important information, while too 
large a window size will delay the process of detecting 
anomalies [11] and may also decrease the sensitivity of 
the method to transient changes of short duration. 
Hence, finding an optimal window size is crucial so that 
the dynamic behavior of the time series can be presented 
with shortest possible window length, 𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛. In general, 
the optimal window size can be selected using the 
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autocorrelation of the time series or other empirical 
methods as a guide. 
 

In this paper, a non-overlapping, contiguous window 
segmentation method was applied, where window 
length l, and step size b were equal. The optimal window 
size was determined empirically by trial and error. 

3.3 Matrix plot 

An image is formed by pixels which can be presented in 
a form of a matrix plot. In this paper, unthresholded 
recurrence plots (URP) were used to transform time 
series into images. URP is an image encoding method 
derived from recurrence plots (RP) without the use of 
thresholding [12], since the main goal is to extract as 
much dynamic information as possible. Generally, 
URPs are regarded as a direct representation of a 
distance matrix that measures the pairwise distance 
between observations. URP can be expressed as 

 
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 = || 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚  − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖||, 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝑁𝑁𝑁𝑁 (2) 

where || · ||  represents the Euclidean norm in phase 
space. 

3.4 Training of AlexNet 

AlexNet is a convolutional neural network (CNN) 
developed by [13]. It consists of 5 convolutional layers, 
3 max pooling layers and 3 fully connected layers. For 
each input images with size of 227x227x3, an output of 
4096 feature vectors will be produced from layer FC2 as 
shown in Fig. 3. 

 

Fig. 3. Simplified schematic diagram of AlexNet architecture 
(top: original architecture, bottom: transfer learning 
architecture). 
 

In general, CNN consists of large number of 
learnable parameters. Training CNN from scratch is 
computationally expensive and requires large amount of 
training images to be efficient. Hence, partially 
retraining a pretrained CNN can be an alternative to 
solve these problems. This approach is commonly 
known as transfer learning, where the knowledge 
learned from a previous task is transferred to a new task. 
The advantages of transfer learning are lower 
computational cost, faster training, and critically, the 
ability to process relatively small data sets, compared to 
the data required to train the CNN ab initio.  

 
In this study, simulated data were used to partially 

retrain AlexNet. The training data set consisted of 70% 
randomly chosen images generated from simulated data, 
while the other 30% were used as test data to validate 
the model. The output classes were set to be either 
stiction or non-stiction.  

 
For transfer learning, the weights of the first three 

convolutional blocks depicted in Fig. 3 were frozen, 
while the rest of the layers were fine-tuned with training 
images. The reason is that these earlier layers were used 
to learn low level features that are generally applicable 
across images with various sources [14], while the later 
layers were used to identified specific features from 
images that would help to differentiate the images into 
specific classes. Hence, the weights learned previously 
in the earlier layers remained unchanged. Training was 
done with stochastic gradient descent with a momentum 
(SGDM) optimizer, a learning rate of 0.0001, and a mini 
batch size of 10.  

3.5 SVM classifier  

The image features extracted from layer FC2 were used 
as predictors to build a support vector machine (SVM) 
classifier. SVM is a supervised machine learning 
technique that finds an optimal hyperplane with a 
maximum margin to separate classes of data in high 
dimensional space [15]. In this paper, five-fold cross 
validation was used to build the linear SVM model, 
while ten-fold cross validation was used to obtain 
generalization performance of the trained SVM. 
Extracted features were divided randomly into 60% 
training data, 20% validation data, and 20% testing data. 

4 Generation of simulated data 
In this study, the Choudhury stiction model developed 
by [16] was applied. The simulated data were generated 
using a simple single input single output (SISO) first 
order transfer function of the feedback control system 
adapted from [5]. A total number of 10,000 samples of 
PV and OP data were collected from each case at a 
sampling rate of 1 s. The initial 500 data points were 
discarded to ensure the time series had stabilized; 
leaving 9,500 samples for training. The transfer function 
is represented by: 

 
𝐺𝐺𝐺𝐺(𝑧𝑧𝑧𝑧−1) =

𝑧𝑧𝑧𝑧−3 × (1.45𝑧𝑧𝑧𝑧 𝑧 1)
𝑧𝑧𝑧𝑧 𝑧 0.8

 (3) 

Seven cases of simulated data are generated in this 
study, which include 3 non-stiction cases and 4 stiction 
cases. The control system parameters for each case are 
set accordingly. The three non-stiction cases are well-
tune ( 𝑷𝑷𝑷𝑷 = 𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐 = 0.15 , 𝑰𝑰𝑰𝑰 = 𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐 𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚⁄ = 0.15 𝑠𝑠𝑠𝑠−1 ), 
excessive integral ( 𝑷𝑷𝑷𝑷 = 𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐 = 0.15 , 𝑰𝑰𝑰𝑰 = 𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐 𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚⁄ =
0.27 𝑠𝑠𝑠𝑠−1 ), and oscillatory ( 𝑷𝑷𝑷𝑷 = 𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐 = 0.15 , 
𝑰𝑰𝑰𝑰 = 𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐 𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚⁄ = 0.15 𝑠𝑠𝑠𝑠−1 ). Note that that the oscillatory 
case is generated with the additional settings of 
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sinusodial disturbance with an amplitude of 2 and 
frequency of 0.01 rad/s. On the other hand, the four 
stiction cases are undershoot stiction (S=3, J=1), stiction 
with no offset (S=3, J=3), overshoot stiction (S=1, J=3), 
and stiction with deadband (S=3, J=0). For all the 
stiction cases, the proportional P and integral I settings 
are same as well-tuned case. 

5 Results and discussion 
The simulated data were divided into batches using a 
window size of 100, as shown in Fig. 4. As can be seen 
from this figure, in the simulated data, it is difficult to 
distinguish between stiction and non-stiction conditions 
by visual inspection. These data were subsequently 
transformed into images through URP, as shown in Fig. 
5. These images were used to retrain AlexNet, with the 
first three convolutional blocks remain frozen, as 
explained previously. The trained AlexNet was 
subsequently used as feature extraction tool and 
classification tool. 

 
Fig. 4. Examples of simulated data PV (blue broken line) and 
OP (solid black line) generated for seven different cases. 

 

Fig. 5. Examples of ‘imaged’ URP generated for seven 
different cases. 

5.1 Pretrained AlexNet vs partially retrained 
AlexNet 

The image features extracted from the pretrained 
AlexNet and the partially retrained AlexNet can be 
visualized through a three-dimensional principal 
component scores plot, as shown in Fig. 6. As mentioned 
previously, these features were extracted from the layer 
FC2. From Fig. 6, it can be seen that the features from 
the partially retrained AlexNet provide better separation 
of the two classes than features obtained from the 
pretrained AlexNet. This can be further proven 
quantitatively using the SVM classifier. Two cases are 
considered, i.e. classification using the first two features 
only as predictors and classfication using all 4096 
features generated by AlexNet. 

 

(a) 

 

(b) 

Fig. 6. Principal component scores plots of features extracted 
from layer FC2 in AlexNet with a window size of 100, 
snowing stiction (black circles) and non-stiction (red stars). 
Descriptions: (a) features from pretrained AlexNet and (b) 
features from a partially retrained AlexNet.  
 
As seen from Fig. 7, by just using the first two features 
from the partially retrained AlexNet, the SVM was able 
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As seen from Fig. 7, by just using the first two features 
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to achieve a classification accuracy of approximately  
97.2%, compared with 84.4% obtained with the 
pretrained AlexNet. When all 4096 features are used as 
predictors, both the pretrained and partially retrained 
versions of AlexNet performed similarly, yielding near 
perfect classification. 
 

 
Fig. 7. Bar charts of SVM classification performance. 
Pretrained AlexNet (dotted bars) and partially retrained 
AlexNet (stripes bars). 

5.2 Effect of window size on the classification 
performance 

As discussed previously, window size is an important 
hyperparameter in the proposed method that needs to be 
optimized. This was done based on a line search of the 
windows size, while training of AlexNet was repeatedly 
10 times for each window size. As can be seen from Fig. 
8, the classification accuracy increased as the window 
size became larger. This is mainly due to the ability of 
larger window to capture the implicit dynamic 
behaviour of time series. Since the main objective is to 
detect the presence of stiction as soon as possible, the 
optimal window size is selected as the smallest size 
giving satisfactory classification i.e. a size of 30, which 
yields a classifier that is approxiately 90% accurate, with 
a detection rate of 30 s. This is significantly smaller than 
the window size of 500 used by recent pubslihed SDN 
method [8]. 
 

 

Fig. 8. Boxplots of classification accuracies of the partially 
retrained AlexNet for different window sizes. 

 

As observed from Fig. 8, the classification accuracies   
are better and more consistent than those obtained with 
another CNN detection method proposed by [10]. 

5 Conclusion 
A novel framework of stiction detection by use of the 
AlexNet convolutional neural network and transfer 
learning is proposed. The proposed methodology, 
convolutional neural network stiction detection (CNN-
SD), has achieved a highly satisfactory performance, 
which suggests that the proposed method could also be 
successfully applied to real industrial data. 
 
Finally, it should be noted that when applied to industrial 
data, further optimisation of the method would be 
possible, among other by considering different 
approaches to the 2D representation of the process 
signals. I would also be possible to use other, more 
recent convolutional neural networks that generally tend 
to outperform AlexNet on image clasification tasks. 
 
 
The authors would like to thank Universiti Teknologi 
PETRONAS (UTP), Malaysia and Curtin University, 
Australia for the facility and technical support provided to 
complete this work.  
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