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Abstract. In this work, we study a multi-objective problem in a pharmaceutical production unit composed 
of several production stations that produce several kinds of products. The goal of this work, in a first step, 
is to propose a scheduling at the production unit in order to establish a synchronization of the different tasks 
on the m-machines. The problem can be formulated by the scheduling of a multi-product flow-shop.Then, 
we take into account the energy constraints of each task to be done.  The problem can be formulated by a 
linear multi-objective MILP program, where the first objective is to determine the best sequence that 
minimizes the production and launch costs. In addition, the second objective is to find the best sequence that 
minimizes energy consumption. The problem is formulated and solved by combining the NEH heuristic and 
the LP-metric method to determine an intermediate solution between minimizing production costs and 
minimizing energy consumption. 

1 Introduction 

 The evolution of technology and the increasing 
competition from more exigent customers impact the 
industry at all different levels. In this context, companies 
tend to improve their performance and productivity by 
adopting new mechanisms and approaches to ensure 
their competitiveness in the market.  In this 
environment, the component that significantly affects 
each organization is the production system. The 
optimization and control of this element generates an 
improvement and a gain for the company.  The main 
activity of this component is the planning and 
scheduling of production. This is why scheduling is 
becoming an essential aspect of production 
management. It consists of establishing a precise plan 
for the use of available resources (time, energy, raw 
materials, etc.). This determines when to process a 
particular task, under which resource and in what 
quantity. It is a question of managing and optimizing 
conflicts according to the criteria and characteristics of 
the production system. More commonly, the production 
scheduling problems dealt with most often consider 
points such as resources, quality and running times as 
target objectives in their optimization approaches. 
However, there are a multitude of other issues that need 
to be addressed to optimize a production system. In 
addition, a field that has emerged in recent years and is 
increasingly solicited is the energy context, in relation 
to the exhaustibility of certain energy sources (non-
renewable energy) and in relation to its negative 
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environmental impact. Environmental issues are now at 
the heart of world affairs. They are now a primary 
criterion of recent economic models. Industrialists must 
now face new challenges of an environmental nature, 
which is most often translated into elements such as gas 
and toxic product emissions, consumption of non-
renewable resources (gas, oil, etc.). In this work, we are 
more particularly interested in the question of the energy 
consumption of a production unit. Indeed, it was 
established following bibliographical research that it is 
a problem which is current and whose stakes are 
important for the industrialists. 
 
 To position our work in this area, namely that our 
work addresses two phases, the first phase related to the 
scheduling of a multi-product flow-shop and a second 
phase related to energy consumption in a multi-
objective framework, an overview of existing work will 
be given subsequently, where several researchers are 
interested in the multi-objective aspect of the criteria for 
optimizing production units as given by Mouzon and al. 
(2007)[1] who have proposed several algorithms that 
can solve a single machine problem aiming to reduce 
energy consumption and total operating time. Shrouf 
and al. (2014)[2] addressed in their scheduling problem 
the minimization of the total cost of the energy 
consumed. Their model considers the cost and amount 
of energy varying from one period to another. Al 
Quaseer and al. (2015)[3] applied a method for 
minimizing delay times and energy consumption during 
idle time through a multi-objective mathematical model 
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based on genetic algorithms. Yan and al. (2016)[4] A 
multi-level optimization approach for a flexible flow-
shop type scheduling problem focused on energy 
consumption and whose resolution is based on genetic 
algorithms. Lu, Wang and al. (2017)[5] establish a 
hybrid multi-objective backtracking algorithm for 
solving a flow-shop type scheduling problem with 
energy-efficient permutation.  
Schultz and al, (2019)[6] applied an iterative multi-
objective local search algorithm adapted to an energy-
efficient hybrid flow-shop type scheduling problem. 
Hasani and al. (2020) [7] have developed a bi-objective 
resolution model based on genetic algorithms for a 
flexible flow-shop type scheduling problem with 
machine interdependence. In order to find a compromise 
between the optimization of the production cost and the 
energy consumption. Min dai and al. (2013)[8] Solved 
an energy-efficient flow-shop type scheduling problem 
by applying an improved simulated annealing genetic 
algorithm. Shijin and al. (2019)[9] adapted a two-level 
hybrid flow-shop type scheduling problem to a glass 
production process. For its resolution a taboo bi-
objective search algorithm and a bi-objective ant colony 
optimization algorithm are developed to treat small and 
large instances. Vallejos-Cifuentes and al. (2019)[10] 
developed a multi-objective model treating flow-shop 
and job-shop environments in an energy-efficient 
manner. An elitist multi-objective genetic algorithm was 
implemented to solve both problems. Geng and al. 
(2020)[11] developed a two-objective optimization 
model for a hybrid flow-shop type scheduling problem 
considering the energy consumption costs based on the 
time of use (TOU) of electricity. Gong and al. (2020) 
[12] conducted a study on the problem of energy-
efficient flexible flow shop type workshop scheduling 
with worker flexibility where green-production, 
processing time and human-related goals are taken into 
account. A hybrid evolutionary algorithm (HEA) is 
proposed to solve the problem. Han and al. (2020)[13]  
built a multi-objective optimization model of the 
blocking flow shop workshop scheduling problem with 
makespan and energy consumption criteria. Next, a 
Discrete Scalable Multi-Objective Optimization 
(DEMO) algorithm is proposed. Wang and al. (2021) 
[14] address a High Energy Efficiency Distributed 
Heterogeneous Welding Shop Scheduling Problem 
Using a MOEA / D Modified to Have a Scalable 
Algorithm for Multi-Objective Models. Xin and al. 
(2021)[15] elaborated on the optimization of a flow-
shop type production system with permutation and with 
start-up times depending on the sequences. Its resolution 
is based on a linear mixed number programming model 
and an improved optimization of the WOA (whale 
optimization algorithm). Ziu and al. (2021)[16] we 
established a multi-objective optimization method by 
adaptive selection of algorithms for solving a hybrid 
flow-shop type scheduling problem under constraints of 
finite variable parameters, including the makespan and 
the consumption of 'energy. According to the state of the 
art, we have noticed that the energy constraint has 
indeed been treated under various facets and using 
several tools, such as genetic algorithms, simulated 
annealing.. Namely that for this type of resolution, the 

choice of the initial solution is random. With a risk rate 
of converging on local solutions. In our context, we 
applied the NEH heuristic which gives the best solution 
for this type of problem (Siyoucef K, Fellahi H. 2021) 
combined in a multi-objective context with energy 
consumption applied to the production company 
SOPHAL SPA pharmaceutical products. Therefore, this 
prompted us to try a more interactive and simplistic 
resolution for the case of the flow shop m machines 
problem. 

2 Problem description  

 The problem of this work concerns a flow shop 
scheduling problem where we have m machines 
assembled in series. Each job (product ei) must pass 
through each machine during the execution of the 
process. All jobs must follow the same route ei, first 
passing through machine 1, then machine 2, and so on 
.... The FSSP (flow-shop scheduling problem) can be 
described as follows: 

 
• Each job of the set J = {1,2, ..., n} passes 
respectively through m machines (i = 1,2, ..., m). 
• At any time, each machine can only operate on one 
job and each 
• A job can only be executed in one machine at a time. 
• There is only one machine per type and they are 
available at all times. 
• The launch and idle time are the change and clean-
up times that are considered constant. 
• The operating times are independent of the 
sequences and known. 
• Jobs can wait between two spots in unlimited 
intermediate stock. 
• Jobs are not necessarily always available to go to 
the end of a previous step 
• No preemption or division of jobs: once the Oij 
operation has started, the job does not exit until the end. 
In our problem, we consider several criteria to establish 
an optimal solution. Namely the production costs and 
the energy consumption costs required for production. 

 

 

              Fig. 1. Diagram representation of a flow-shop 

3 Mathematical Model 

3.1 Data and parameters 

The following table groups together all the parameters 
and data established to formulate the objective functions 
and mathematical constraints reflecting the problem 
previously described and which will be the subject of an 
interpretation in a computer program thereafter 
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Table 1. data and parameters. 

Type Index Description 

 
 

Overall 

 
J 

Set of jobs (products), J = 
{1,. . ., n}, indexed by j 

 
M 

Set of machines, M = {1,. . 
., m}, indexed by i. 

 
Pa

ra
m

et
er

s 

n Number of products (jobs) 

m Number of machines 

Pij Processing time of machine 
i on job j, Pij � Z+ 

Tijk Waiting time for the 
transition from job j to job 
k on machine i in inactivity. 

CPi Unit operating cost of 
machine i (per hour) 

CEi. Unit cost of the energy 
consumed by machine i 
during operation (per hour) 

CSEi. Unit cost of the energy 
consumed during the 
machine's inactivity time i 

 
D

ec
is

io
n 

va
ri

ab
le

s 

Xij Binary variable, which 
takes 1 if the job j is in 
position i in the machine i, 
and 0 otherwise Xi, j � {0, 
1}, �i, j � (J, M). 

Zijk Binary variable which takes 
0 if the job j goes to 
position i after the job k 
without waiting time, and 1 
Else Zi, j, k � {0, 1}, �i, j, 
K � (J, M) . 

Sij Start time of the operation 
on job j by machine i, Sij � 
0, �i � M, j � J 

PEi Total cost of the energy 
consumed by the machine i 
= k during treatment 

SEi Total cost of the energy 
consumed by the machine i 
= k at start-up or during 
waiting time 

PCj Total production cost of job 
j 

Pij Processing time of machine 
i on job j, Pij � Z+ 

Tijk Waiting time for the 
transition from job j to job 
k on machine i in inactivity. 

CPi Unit operating cost of 
machine i (per hour) 

 

3.2 Mathematical model  

Min Z1 = � ���
�	

�	�        (1).    

Min Z2 =  � ��� � �����
�	�     (2) 

Under the constraints:   

� ���
�	

�	�  , �p = 1….m      (3) 

� ����	�
�	�  , �j = 1….n      (4)  

S1,1 = 0 (5)  

S1,K +  � ���� ���
�	

�	� ��= S1,(k+1)   1�K�n-1               (6) 

SK,1 +  � ���� ����	�
�	� ��= S(k+1),1 1�K�m-1                (7) 

Si,k +  � ���� ���
�	

�	� ��� S(i+1),k 1� i � m − 1, 2 � K �n    (8) 

SK,j +  � ���� ���
�	

�	� ��� Sk,(j+1)   2 � i � m, 1 � k � n − 1 (9) 

PEk   � CEk x � ���� ���

�	�      1 � k � m          (10) 

SEk   � CSEk x � ����� ����

�	�     1 � k � m           (11) 

PCk   �   � ���� ������
�	� 1 � k � n                        (12)  

Xi,j  et Zi,j,k   � {0, 1}, 1 � p � m, 1 � j � m                (13) 

PEk,SEk,PCnm, Si,j � 0, 1 � i � m, 1 � j � n.             (14) 

The following formulas are correlated to govern the 
logic of the problem previously described. Each having 
an explanation as follows:Formula (1) expresses the 
sum of the total production costs of all the jobs and 
represents the first function to be minimized. Formula 
(2) expresses the sum of the total energy consumption 
costs and forms the second function to be minimized. 
Constraints (3) and (4) indicate the positioning of job j 
in k, and ensure that each job must be assigned exactly 
once on each machine and that each job must occupy 
exactly one position at a time. Constraint (5) sets the 
process start time to zero. Constraints (6) and (7) ensure 
that there is no idle time on the first machine and that 
the first job in the sequence is processed on all m 
machines without delay (time waiting time). Then, the 
constraint (8) indicates that the start time of each job j 
on machine i +1 does not occur before the end of its 
Completion time on machine i. The constraint (9) 
indicates that the job j + 1 does not pass to the machine 
i as long as the processing job j in position p = i (on the 
machine i) is not completed. Then, the constraints (10) 
and (11) define the estimate of the energy consumption 
costs specific to the machines i at start-up and during 
processing. The constraint (12) indicates the limit of the 
total production cost of the job j = k in the m machines. 
Finally, the constraints (13) and (14) indicate that the 
decision variables are respectively binary and positive. 

3.3 Description of the real case 

 
 SOPHAL SPA, is a Pharmaceutical Company 

specialized in the development, production and 
marketing of generic drugs located in Oran and having 
several production unit. it specializes in the manufacture 
of a multitude of medicaments. where the production is 
carried out by a production by batch. Each batch 
corresponding to a single product goes through a global 
production process of 4 consecutive steps started by the 
stage of mixing and weighing, followed by the stage of 
compression, then the coating and finally packaging. 
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This process concerns several types of products of 
different ranges. The operating times of the machines 
vary according to the type of product, so they are 
considered to be at relative speed. This description of 
the production process of generic products at SOPHAL 
SPA can be compared to a flow=shop model without 
permutation.  

3.4 Resolution and results interpretation  

 To solve this problem we have applied the NEH 
heuristic algorithm, known for the precise resolution of 
NP-Difficult flow-shop type scheduling problems but 
most often exclusive to the makespan computation. We 
have adapted the computational logic of the NEH 
heuristic to a bi-objective model, in terms of 
computational criteria and constraints as expressed in 
the developed mathematical model. More precisely, the 
modification relates to the calculation preceding the 
scheduling sequence. In addition to operating times, the 
algorithm translates production costs and energy 
consumption costs as criteria to establish the optimal 
sequence. It aims to calculate an optimal cost weighting 
production costs and energy consumption costs. In 
doing so, an optimal total cost is obtained which 
represents a balanced cost, which acts as a compromise 
between minimizing energy consumption and 
production costs. 

 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

Fig. 2. Explanatory flowchart of the algorithm. 

The algorithm first requires the entry of information 
such as unit production and energy costs as well as the 
unit energy consumption of machines and operating 
times and quantities to be produced (number of jobs), 

then correlate, and calculate a matrix balancing the 
costs, which will be scheduled thereafter.  

In order to test the validity of the proposed 
algorithm, we implemented and programmed it in 
python language. Using several scenarios, where in each 
scenario, we have taken into consideration m machines 
and n jobs applied to the two objectives studied.  Which 
are the best scheduling sequence that minimizes the 
different costs and the minimization of energy 
consumption represented by three different 
configurations, a configuration for small instances, a 
configuration for medium instances, and a configuration 
for large instances presented as follows:  

 
• Scenario I : illustration of small instances. 4 

Machines / 4 Jobs 
• Scenario II : illustration of average instances, 4 

Machines / 9 Jobs 
• Scenario III : illustration of large instances, 12 

Machines / 50 Jobs 
For the execution of the different scenarios, we 

started by collecting data from the company SOPHAL 
SPA in order to determine the unit production costs and 
the unit costs of energy consumed and energy 
consumption for each type of machine used represented. 
by table (1) and the operating times per hour represented 
by table (2) relating to scenario I. 

 
 

• SCENARIO I: 4 machines / 4 jobs  
 
The following tables give the information and data 

relating to the first scenario, which were identified at the 
level of the SOPHAL SPA company in order to have an 
approach of the real case. This data is used for 
programming and running the established algorithm. 

 
Table (2) lists the data relating to the unit costs of 

energy for the production and consumption of machines. 

 Table 2. data for scenario I 

 
 

Table (3) expresses the operating times required 
for the jobs. 
 
 
 
 
 

                   
Machines  

 
Data 

 

A B C D 

Unit production costs 
(per hour) 

4 7 6 4 

Unit cost of energy 
(per hour) 

9 7 4 3 

Energy consumption 
per hour (kw) 

0,7 0,45 0,68 0,83 

Entering parameters; number of 
machines, number of tasks, 

operation times, unit costs of 
time, unit costs of energy. 

Calculation of the total 
consumption matrix. 

Calculation of the operating 
time cost matrix 

Calculation of the energy 
consumption cost matrix 

Calculation of the matrix 
equivalent to the objective 

function 

Display of results 
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     Table 3. Operating time per hour for scenario I 

               

 
 

 
 
 
 
 
 

 
After execution of the program, the results obtained 

are: 
- The optimal weighted cost is: 225,455 
- The optimal sequence: [1, 4, 2, 3] the order 

of passage is therefore the following; the 
first batch is produced, followed by the 4, 
then the second and the third. 

 
After execution of the scenario in the classic NEH 
program, we obtained the following results to compare 
with:  

- The optimal weighted cost is: 225.455 
- The optimal sequence: [1, 4, 2, 3], which is 

the same sequence with our program. 
 

• SCENARIO II : 4 machines / 9 jobs  
 
The following two tables show the data developed to 

illustrate the average instances, as an extension of the 
first scenario in order to simulate the behavior of the 
algorithm and to demonstrate its flexibility. 

Table (4) lists the data relating to the unit costs of 
energy for the production and consumption of machines. 

 

Table 4.  Data for scenario II 

 
Table (5) expresses the operating times required for 

the jobs. 
 

 

Table 5.  Operating time per hour for scenario II 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
After 

execution of the program, the results obtained are: 
- The optimal weighted cost is: 351.355 
- The optimal sequence: [5, 4, 2, 1, 9, 8, 3, 7, 

6] 
 

• SCENARIO III : 12 machines / 50 jobs  
 

Finally, we established a third scenario, which is an 
extension to large instances of up to 50 jobs running on 
12 machines. This simulation tests the behaviour of the 
program in this case and confirms the logical evolution 
of the results.  

The table (6) lists the data relating to the unit costs 
of energy for the production and consumption of 
machines. 

Table 6.  Data for scenario III 

 
The table (7) lists the operating times required for 

the jobs. 
 

 

Table 7.  Operating time per hour for scenario III 

 

   M 

J 

A B C D E F G H I J K L 

1 0 1 8 0 5 5 4 6 2 2 6 6 

2 7 7 2 6 3 4 6 9 4 4 7 8 

3 4 1 3 7 6 4 8 5 5 7 2 4 

4  9 1 8 6 4 8 2 0 1 6 3 6 

Machines 
Jobs 

 

A B C D 

1 6 8 5 6 
2 6 7 6 4 
3 8 7 9 2 
4  8 7 9 2 

              Machines  
 
Data 
 

A B C D 

Unit production costs (per 
hour) 

7 3 5 6 

Unit cost of energy (per 
hour) 

7 6 5 8 

Energy consumption per 
hour (kw) 

0.45 0.67 0.32 0
.
8
4 

                  
Machines 

Jobs 
 

A B C D 

1 6 7 2 6 
2 6 7 2 6 
3 9 5 5 7 
4  5 2 8 5 
5 5 2 8 5 
6 7 3 9 4 
7 7 3 9 4 
8 7 3 9 4 
9 4 9 8 5 

   
Machines  

 
Data 
 

A B C D E F G H I J K L 

Unit production 
costs (per hour) 

4 3 4 5 4 5 2 3 5 4 7 6 

Unit cost of energy 
(per hour) 

4 6 7 2 4 3 6 7 3 7 5 6 

Energy 
consumption per 
hour (kw) 

0
.
4
6 
 

0
.
8
7 

0
.
9
2 

0
.
7
3 

0
.
8
1 

0
.
6
3 

0
.
4
9 

0
.
9
5 

0
.
3
9 

0
.
5
4 

0
.
5
8 

0
.
7
6 
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5 0 0 9 9 5 0 6 0 1 9 9 4 

6 8 1 6 8 3 5 1 0 9 0 8 9 

7 3 4 0 9 8 7 7 2 8 8 1 7 

8 9 4 0 5 8 0 3 1 6 9 2 3 

9 2 2 2 1 6 6 2 6 1 8 3 1 

10 8 6 6 2 4 8 8 0 6 5 5 9 

11 0 1 8 0 5 5 4 6 2 2 6 6 

12 7 7 2 6 3 4 6 9 4 4 7 8 

13 4 1 3 7 6 4 8 5 5 7 2 4 

14 9 1 8 6 4 8 2 0 1 6 3 6 

15 0 0 9 9 5 0 6 0 1 9 9 4 

16 8 1 6 8 3 5 1 0 9 0 8 9 

17 3 4 0 9 8 7 7 2 8 8 1 7 

18 9 4 0 5 8 0 3 1 6 9 2 3 

19 2 2 2 1 6 6 2 6 1 8 3 1 

20 8 6 6 2 4 8 8 0 6 5 5 9 

21 0 1 8 0 5 5 4 6 2 2 6 6 

22 7 7 2 6 3 4 6 9 4 4 7 8 

23 4 1 3 7 6 4 8 5 5 7 2 4 

24 9 1 8 6 4 8 2 0 1 6 3 6 

25 0 0 9 9 5 0 6 0 1 9 9 4 

26 8 1 6 8 3 5 1 0 9 0 8 9 

27 3 4 0 9 8 7 7 2 8 8 1 7 

28 9 4 0 5 8 0 3 1 6 9 2 3 

29 2 2 2 1 6 6 2 6 1 8 3 1 

30 8 6 6 2 4 8 8 0 6 5 5 9 

31 0 1 8 0 5 5 4 6 2 2 6 6 

32 7 7 2 6 3 4 6 9 4 4 7 8 

33 4 1 3 7 6 4 8 5 5 7 2 4 

34 9 1 8 6 4 8 2 0 1 6 3 6 

35 0 0 9 9 5 0 6 0 1 9 9 4 

36 8 1 6 8 3 5 1 0 9 0 8 9 

37 3 4 0 9 8 7 7 2 8 8 1 7 

38 9 4 0 5 8 0 3 1 6 9 2 3 

39 2 2 2 1 6 6 2 6 1 8 3 1 

40 8 6 6 2 4 8 8 0 6 5 5 9 

41 0 1 8 0 5 5 4 6 2 2 6 6 

42 7 7 2 6 3 4 6 9 4 4 7 8 

43 4 1 3 7 6 4 8 5 5 7 2 4 

44 9 1 8 6 4 8 2 0 1 6 3 6 

45 0 0 9 9 5 0 6 0 1 9 9 4 

46 8 1 6 8 3 5 1 0 9 0 8 9 

47 3 4 0 9 8 7 7 2 8 8 1 7 

48 9 4 0 5 8 0 3 1 6 9 2 3 

49 2 2 2 1 6 6 2 6 1 8 3 1 

50 8 6 6 2 4 8 8 0 6 5 5 9 

 
After execution of the program, the results obtained are:  

- The optimal weighted cost is: 1646.585 
- The optimal sequence: [1, 36, 3, 37, 2, 36, 35, 

32, 41, 39, 31, 42, 40, 31, 5, 29, 30, 23, 21, 22, 
17, 34, 18, 24, 19, 4, 33, 6, 20, 44, 43, 25, 45, 
50, 26, 49, 48, 47, 16, 15, 14, 13, 10, 11, 10, 
46, 9, 8, 7, 25] 

Table 8.  Summary of the results obtained 

 
The following table summarizes the results obtained 

after the three runs. For each scenario, we have the 
optimal calculated cost, and the order in which the jobs 
are run representing the optimal sequence to be 
executed. This is therefore the sequence that allows for 
lower energy consumption, knowing that consumption 
and execution is different from machine to machine.  
It can be seen immediately that by increasing the number 
of instances the optimal cost price also increases by 
positive correlation. Which is the norm and confirms the 
logic of the developed program. 

 
 
 
 
 
 
 
 
 
 
 

 

Scenarios Optimal 
weighted 
cost  

Optimal sequence  

Scénario I 225,455 [1, 4, 2, 3] 

 

Scenario II  

351.355 

 

[5, 4, 2, 1, 9, 8, 3, 7, 6] 

 

Scenario III 1646.585 

 

 [1, 36, 3, 37, 2, 36, 35, 
32, 41, 39, 31, 42, 40, 
31, 5, 29, 30, 23, 21, 
22, 17, 34, 18, 24, 19, 
4, 33, 6, 20, 44, 43, 25, 
45, 50, 26, 49, 48, 47, 
16, 15, 14, 13, 10, 11, 
10, 46, 9, 8, 7, 25] 
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4 Conclusion 
 
In this work, we have developed a multi-objective 

mathematical model made for the resolution of an NP-
difficult flow-shop type-scheduling problem which 
takes into account the production costs and the energy 
consumption costs for the calculation of the optimal 
result.  

In this type of problem, the energy resources, 
weighted by costs, can be subject to optimization based 
on a multi-objective resolution model. Energy, 
especially electricity, is a resource that can affect 
scheduling efficiency, which is why it is the subject of 
the heart of the matter. In order to explain the theoretical 
choices which form the basis of our problematic, we 
have developed, following our research and 
documentation, an explanatory state of the art. Then, we 
propose a multi-objective mathematical model as a 
resolution translated into a computer program. The 
model was solved by programming under the python 
language of a customized algorithm based on a 
customized NEH logic adapted to a two-objective 
scheduling problem. The results obtained demonstrate 
the adaptability of the computation under small, medium 
and large instances and their growing size demonstrates 
the positive correlation between the objectives of energy 
consumption and production cost. Just as it confirms the 
logic of the established algorithm. 
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