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Abstract. Photovoltaic (PV) system installations have increased in recent years partly due to growing 

energy needs from a rising population. Such PV systems producing electricity contribute in promoting green 

energy. However, solar energy is highly intermittent and uncontrollable due to its high spatial and temporal 

variations of atmospheric conditions. With such variability, PV power forecasting is therefore crucial for 

full integration of solar energy into the grid. In this study, Support Vector Regression (SVR) and Random 

Forest Regression (RFR) models were built and used to forecast real-time PV power output of a 1.5kW solar 

PV system installed at the Department of Physics, University of Nairobi in Kenya. SVR model outperforms 

RFR model with root mean square (RMSE) of 43.16 adjusted R2 of 0.97 and mean absolute error (MAE) of 

32.57 on the validation. Dataset compared to RMSE of 86, adjusted R2 of 0.90, MAE of 69 were obtained 

for RFR model. A real time power forecast application based on the SVR model was successfully built using 

the Shiny application in R software. This shows that SVR model is more robust than RFR and has 

capabilities of reducing errors during computations. Keywords:  Photovoltaic system; Power forecasting; 

Support Vector regression; Random Forest Regression. 

1 Introduction 
Kenya’s economic growth has led to a rise in the 

demand for electricity from 1802 MW in 2018 to 

1912MW in November 2019, rising steadily by 3.6% 

annually[1] 74.5% of Kenya’s energy demand is 

provided by wind, hydropower, solar and geothermal 

power which are all renewable energy sources with 

fossil fuel only supplying 25.5% to the energy mix. 

Majority of the power is derived from hydropower 

supplying approximately 677MW followed by 

geothermal 670 MW of the total 2.7GW installed 

capacity [1] However, hydropower capacity is adversely 

affected by long periods of drought which have been 

experienced since 2015. On the other hand, geothermal 

power has great potential of providing up to 10 GW 

power [2].  
 

However, rising investment charges, land disputes, lack 

trained personnel, huge grid infrastructural investment 

hinder its full exploitation [3] The focus of renewable 

energy has shifted to solar energy due to its abundance 

and availability.  

Due to her location at the equator, Kenya receives an 

abundance of solar energy averaging between 5-7 

sunshine hours and 4-6 kw/m2 insolation daily [4]. 

Photovoltaics are highly popular source of solar energy 

because they require low maintenance, silent and clean 

energy[5]. 

                                                 
* Corresponding author: mwenderita74@gmail.com 

However, solar power generation is heavily dependent 

on the variation of weather parameters such as 

temperature, relative humidity, dust accumulation and 

wind speed [6][7]. This inherent fluctuating nature of 

solar energy poses a major challenge in the quest to fully 

integrate solar energy power plants into existing power 

grids without compromising on the stability of the 

power output. 

Hence, proper energy budgeting and planning, requires 

the development of reliable predictive and forecasting 

models able to provide accurate performance forecasts 

and modelling information for PV solar systems power 

output.  

PV forecasting methods include physical, statistical and 

hybrid methods. Statistical methods have become 

popular because they are much simpler to implement, 

require less input data than traditional methods hence 

have low computational costs [8] Solar PV power 

forecasting models were based solely on the use of 

historical solar irradiance data on assumption that that 

solar irradiance is the only parameter influencing the 

performance of PV system [9] 

However, this assumption led poor forecast, hence led 

researchers to include other weather parameters as 

inputs in PV predictive models. Models that used 

parameters such as wind speed, ambient temperature, 

solar irradiance, relative humidity yielded highly 

accurate predictions [7-10]. 

They also study the relationships between the weather 

variables and can determine variable importance. 
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Predictive models that used feature selections 

techniques such as principal component analysis (PCA) 

to reduce dimensionality which improves the 

performance of the models 

This work aimed at creating interactive models using 

Support Vector machines and Random forest regression 

that accurately predict PV power output using real-time 

observations and weather data using support vector 

machine and random forest. 

1.1 Support vector machines

Support vector machines (SVM) is used to perform both 

classification and regression. It involves the 

construction of a separation hyperplane or collection of 

hyperplanes to execute regression on high dimensional 

data. When the algorithm gets labeled training data it 

forms the optimum hyperplane which separates new 

sample data with main the goal being to find a 

hyperplane �(�) that maximum error (�) from the 

training data and should be as flat as possible [11].  

Hyperplane �(�) is expressed by the linear equation 

 �(�) = ���� + � (1) 

where b is the slack variable 

In SVR, the set absolute error or deviation from the 

hyperplane should be less or equal to the specified 

margin called the maximum error ɛ whose value 

parameter can be tuned to achieve high accuracy in a 

model. To ensure the flatness, one has to ensure w is has 

small as possible this is done by optimizing the problem 

to give [11] 

 �	
 1
2 |�|� 

(2) 

subject to 

 ������ + � ≤ � 

���� + �−�� ≤ � 

(3) 

 

where � is the maximum error , �	
 is minimize. 

 

Most case errors may occur beyond the ε we denote the 

deviation from the margin as ξi_, Equation (3) now 

expressed as shown below [11] 
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Constraints 

 �� − ��� − � ≤ � + ��  
���� + �−�� ≤ � +  ��  

(5) 

 

where � > 0 is the penalty parameter of the error term. 

When C increases the tolerance for points outside the ε 

also increases and as C approaches zero the tolerance 

approaches zero [11].  

 

SVR has gained popularity because it can effectively 

classify non-linear data by mapping inputs into high-

dimensional feature spaces even when the datasets are 

small. Kernel function enables one to locate a 

hyperplane in the higher dimensional space without 

elevating computational cost. Increase in the dimension 

of data leads to a rise in the computational cost. When 

dimension increases and the separating hyperplane is 

not found in a particular dimension, a kernel is expected 

to shift the data to a higher dimension support vector 

classifier. This is achieved by adding a kernel trick 

which transforms the classes into a higher dimensional 

space, where classes can be linearly separated [11]. 

Kernels are classified into linear, polynomial, radial 

basis function kernels. Function (�) maps training 

vectors (xi) into higher dimensional space, this is known 

as the kernel trick �(��, ��) expressed by the equation 

[11] 

 

 
�(��, ��) ≡  �(��)� (��). (6) 

 

Furthermore, SVR is less prone to overfitting issue, after 

training the prediction phase is rapid and works well 

with high dimensional data.. 

1.2 Random Forest Regression

Random forest regression (RFR) involves growing of 

trees depending on random vector Ө�  such that the tree 

predictor ℎ(�, Ө) takes a numerical value. A random 

forest is built by taking an average over k of the trees to 

reduce the variance hence finding a balance between the 

two extremes which is expressed as [12]  

��� = {ℎ(�, Ө�), � = 1, … } (7) 

where {Ө�} is the random vector and ℎ(�, Ө) is the 

tree predictor 

Random vectors {Ө�} are independently identically 

distributed and each tree selects the most popular class 

at input x vectors [12]. The mean squared generalization 

error (GE) for predictor is ℎ(�) is given by the equation 

!" = "#$(% − ℎ(�))� (8) 

where "#$  is expected value  

 

The GE for forests converges as to a limit as the number 

of trees increases. For an accurate RFR model low 

correlation between residuals and low error trees are key 

[12]. The more the number of trees the more robust the 

forest becomes. The RFR do not over fit data as more 

tress are added but GE is produced. 

 

1.3 Accuracy Metrics for the evaluation of 
prediction models

Several metrics are used to determine the accuracy 

solar (PV) prediction models based on ML techniques. 

They include mean squared error (MSE), coefficient of 

determination (R2), Adjusted R2 and mean absolute 

error. The MSE measures an average value of the 

squares of errors, expressed in the equation [13] 

�&" = 1
' �*�� − �-/�

3

���
= ��&"� 

(9) 

where �� is the i-th actual value, �-is the predicted 

value for �� , B is the number of samples, and RMSE is 

the square root of MSE. 
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When the RMSE decreases the predictive model’s 

performance increases. Mean absolute error (MAE) is 

the average difference between the predicted and real 

values, it is computed using the equation 

 

�4" =  1
' � |�� − �-|

3
  

 

(10) 

 

The MAE shows measure of errors between the 

predicted values and the real values but does not indicate 

the direction of the error. Coefficient of determination 

(R2) is the proportion of the variance of the dependent 

variable which the independent variables describe as 

expressed in the equation [13]  

 

�� = 1 − ∑ *�� − �-/�6���
∑ (�� − �7)�6���

 
(11) 

where �7 is the mean of the actual values of �� . 
 

The adjusted R-squared (489 ��) is a modification 

of R-squared and only increases when the independent 

variable is significant. It is expressed in the equation 

[13]  

489 �� = 1 − (1 − ��) ' − 1
' − : − 1 

(12) 

where : is the total number of independent variable. 

 

2 . Materials and Method

2.1 Experimental setup

This study was on a 1.5kW PV string installed at the 

Department of Physics, Chiromo Campus, University of 

Nairobi, Kenya. It consisted of six 250W Polycrystalline 

Solinc solar panels connected in series. The solar panels 

were first cleaned using a clean cloth and plain water 

before commencing with the measurements. Solar 

irradiance was measured using a HT304N Reference 

Cell while the PV module temperature was measured 

using a PT300N temperature sensor. A current-voltage 

(IV) analyzer was used to measure the current and 

voltage of the solar PV system. The data was collected 

from 10:00 a.m. to 3:00 p.m. EAT at 30 minutes’ 

interval for 21 days. Data analysis was done using R–

software and Origin 9.1 software. The data was then pre 

processed using Principal component analysis. The 

preprocessed data was divided into training, testing and 

validation dataset using the ratio 60%, 20% and 20% 

respectively. Support Vector regression (SVR) 

predictive model using radial basis kernel model and

Random Forest Regression (RFR) model of 20 trees 

were built in the R software Cross validation (CV) was 

done using the leave one out cross validation 

(LOOCV), � -fold and random resampling on the 

training dataset, in order to prevent the models from 

overfitting. The performance of the trained model was 

evaluated using the mean absolute error (MAE), root 

mean square error (RMSE) and the coefficient of 

determination (R2) on the training and testing dataset 

validation dataset and finally tested using the test set.

Figure 1:Block diagram showing a summary of the 

methodology

3 .RESULTS AND DISCUSSION

3.1 Principal component analysis

Exploratory data analysis was done to discover trends 

and relationships between 231 observables and 5 

variables collected for a period of three weeks. 
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A correlation matrix containing Pearson's coefficient 

correlation values between solar irradiance, ambient 

temperature, module temperature and relative humidity 

was obtained as shown in Table 1 

The correlation coefficients shown in Table 1 are greater 

than 0.70 indicate high correlation between variables 

hence indicate redundant information in the data which 

often decrease accuracy of a predictive model. Principal 

component analysis was used to remove redundant 

information from the measured weather parameters 

resulting into four uncorrelated principal components 

(PC's).The first (PC1), second (PC2), third (PC3) and 

fourth principal (PC4) components explained 79.86%, 

15.53%, 3.70% and 1.113% of variance of the data 

respectively. The PCA results indicate that the first two 

principal components (PC1 and PC2) account for 

majority (95.19 %) of the variability of the dataset. 
 

3.2 Support Vector Regression 

SVR predictive model was built and its performance 
evaluated. Table 2 shows that the model trained using 
the LOOCV yielded the lowest RMSE ,40.40 compared 
to k-fold (3), and CV random resampling are 40.70 and 
47.96 respectively. The performance is the built trained 
models on new tested dataset shows that the LOOCV 
and to k-fold technique yielded same value of 45.10 
while the CV resampling technique yielded highest 
RMSE of 50.30. 

 

Table 1:Performance evaluation of SVR training data set and 

test dataset based on k-fold, “LOOCV” and CV (Random 

resampling) employed

Root mean 
square error 
(RMSE)

Coefficient of 
determinatio
n (R2)

Mean 
absolute 
error (MAE)

Cross 
Valida
tion 
techni
que

Train Test Train Test Train Test

;
− <?@A(B

40.70 45.10 0.98 0.97 30.40 29.01

LOOC
V

40.40 45.10 0.98 0.97 29.01 29.27

CV
(Rand
om 
resam
pling) 

47.96 50.30 0.97 0.96 31.72 32.06

 

3.3 Random Forest Regression

The leave cross validation yielded the best model with 

highest R2 of 0.96 and the lowest MAE and RMSE of 51 

and 65 on training dataset as shown in Table 3. 

However, on the testing dataset k-fold(3) cross 
validation technique outperformed the LOOCV and CV 

random resampling with lowest RMSE and MAE of 

84.4 and 62.2 respectively and the highest R2 of 0.90 as 

shown in Table 3 

 
Table 2:Performance evaluation of RFR training data set and 

test dataset based on k-fold, “LOOCV” and CV (Random 

resampling) employed

 

Root Mean 
Absolute 
Error 
(RMSE)

Coefficient of 
determination
(R2)

Mean Absolute 
Error (MAE)

Cross 
Validati
on 
techniq
ue

Train Test Train Test Train Test

;
− <?@A(B)

76W 84.4 0.94 0.90 58.1 62.2

LOOC
V

65W 94 0.96 0.87 51.8 68

CV 
(Rando
m
resampl
ing)

79W 88.89 0.94 0.88 63.98 64.5

 

The  evaluation of the performance of the SVR LOOCV 
and RFR k-fold (3) trained was evaluated further using 

a validation dataset.  

  

Table 1 :Correlation matrix showing the degree of 

correlation between the measured weather parameters
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The results showed that SVR yielded highest R2 of 0.97 

compared to 0.90 of RFR. While the MAE was at 32.57 

for SVR model against 69 for the RFR model 

performance on the validation dataset as shown in Table 

below 4. 

 
Table 3:Comparison of performance of RFR and SVR based 

on performance on validation dataset

ML 
tech
niqu
e

RMSE Adj R2 MAE

Train Valid Train Valid Train Valid

RFR
k-
fold 
(3)

76 86 0.95 0.90 58.1 69

SVR
(LO
OCV
)

40.4 43.16 0.98 0.97 29.01 32.57

 

3.4 Power forecast application based on 
the 1.5kW PV Solar system

The power forecast application was successfully built 

using the Shiny application in R environment based on 

the SVR model using the “LOOCV” technique. The 

application is equipped with input buttons namely; solar 

irradiance, module temperature, ambient temperature 

and relative humidity and then outputs the real time 

predicted PV power output based on the trained SVR 

model as shown in Figure 2.The figure 2 shows a 

demonstration of random input parameters feed into the 

application and real time PV power forecast. 

 
Figure 2 Power Forecast application user interface with input 

buttons, submit button and PV Output power.

 

4 CONCLUSION
An experimental setup was successfully installed to 

collect performance data of the 1.5kW PV system in 

varying weather conditions for a period of three weeks.

PV power forecasting models coupled with PCA were 

built using SVR and RFR and were successfully trained, 

validated and tested to forecast real-time PV power 

output. SVR model. SVR model outperforms RFR 

model on the validation. dataset. Power forecast 

application was also built in R shiny based on the SVR 

LOOCV model built. This shows great potential on the 

development of site-specific and dynamic solar PV 

forecasting models. 

 

Data collection for a longer period is recommended to 

ensure a large dataset is used for both training and 

testing hence increasing model accuracy. Data be 

collected from different sites with varying weather 

conditions to ensure inclusivity in the interactive 

predictive app built. 
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