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Abstract. Indoor sudden pollutant leakage brings environmental pollution and occupational exposure, so 

it is more and more important to obtain the location and identification of leakage sources. Through the 

forward method based on machine learning, this paper establishes a reverse traceability model for indoor 

multiple pollution sources. The POD method is used to obtain a large number of intermediate working 

condition data. The data pre-processing strategy of first normalization and then random forest feature 

screening can effectively improve the accuracy and generalization ability of the model. Based on a real 

environmental room case, model verification and sensor deployment optimization are carried out. The 

results show that the four sensors deployed in a specific location can achieve more than 95% positioning 

accuracy. In addition, the leakage possibility ranking component embedded in the model can effectively 

guide the staff to check the leakage points in turn, and the efficiency of three checks is as high as 99.91%.

1 background 
In the real industrial production process, the aging and 

failure of the original sealing mechanism and the change 

of the medium condition lead to the abnormal leakage of 

toxic and harmful substances. It is necessary to control 

and eliminate pollution sources. The process of quickly 

obtaining the location information of the pollution 

source according to the sensor on-site monitoring data 

belongs to the inverse problem solving [1]. 

Existing backward traceability methods mainly 

include backward method and forward method [3]. The 

backward method has strong theoretical basis and 

physical significance, but its rapid application in 

practical pollution source identification is limited by the 

long reverse solution time, poor stability and fixed prior 

knowledge of the transmission model [2]. The forward 

method can respond in real time in practical application 

and is closely combined with the field monitoring data 

of sensors, but it often needs a lot of simulation as the 

data support of model training in the early stage. It can 

be seen that there is a lack of online source identification 

method that can simultaneously meet the requirements of 

no prior knowledge, low computational cost, fast 

solution speed and high traceability accuracy in the 

industrial field of reverse traceability tasks. 

Vukovic et al. [5] first applied the forward method to 

the identification of multi-area building pollution 

sources. Bastani et al. [6] used a limited number of 

sensors to monitor the instantaneous concentration of 

different areas to achieve real-time rapid traceability. 

The above research inspired us to acquire and rapidly 

expand the data set through forward simulation, and 

further use the forward method to carry out reverse 
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traceability [4]. In this paper, CFD technology is used as 

a tool for forward simulation data set preparation, and on 

this basis, pollution source location identification is 

carried out. 

2 Machine learning traceability model 
framework 

2.1 An overview of the framework 

Figure 1 shows an overview of the reverse traceability 

model framework proposed in this paper. 

Fig. 1. An overview of the backward traceability model 

framework.

2.2 Algorithm introduction 

Step 1 Numerical simulation and sample expansion 

Star-CCM software with large scale parallel pre and 

post processing capability and computing capability is 

used to carry out numerical simulation, and the following 

assumptions are made: (1) The single pollution source 

problem. (2) Contaminants are released instantaneously. 

(3) The environment is constant. 
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Traditional numerical simulation methods have low 

efficiency in acquiring datasets [4]. In order to make up 

for the shortcoming of the forward method, this paper 

creatively applies POD to the data set expansion of 

artificial neural network model. It can achieve the 

reduction and rapid acquisition of physical field [7].

Step 2 Data pre-processing strategy 

The results show that the accuracy of the test set 

constructed with Norm-RF pre-processing strategy is 

higher than that constructed with RF-Norm pre-

processing strategy. After the implementation of data 

pre-processing strategy, the data set is significantly 

reduced and the training time of the model is greatly 

shortened, which greatly improves the training 

efficiency of the model and reduces the calculation cost. 

The normalization method used linear function method 

(Min-Max Scaling) and the formula was as follows: 
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Step 3 Random forest feature selection 

Random forest algorithm can evaluate the 

contribution of each feature in classification and realize 

parallel training. The process is summarized as 

follows:(1) N_estimators time sampling is randomly put 

back from the original extended training set to generate 

100 training sets with intersection. (2) Generate an 

independent decision tree model for each training set. (3) 

Each split of a single decision tree is based on the Gini 

index to select the optimal feature. (4) The importance 

score of features is normalized and the output is arranged 

in descending order. Through the above steps, the 

features with higher importance scores can be used as the 

input of the neural network classifier, which greatly 

improves the training efficiency of the model. 

Step 4 Data segmentation and stratified sampling 

Data set segmentation should follow stratified 

sampling. The data set can be divided into different types 

according to the location of pollution sources. In addition, 

the segmentation of training set and data set is based on 

Pareto criterion [8], that is, 80% samples are randomly 

selected as training set and 20% samples as test set. The 

Python data segmentation program automatically 

stratified sampling and segmentation of data sets, and 

fixed random seeds to ensure the randomness of sample 

extraction and reproducibility of the program. 

Step 5 Neural network source location 

In this paper, pollutant concentration distribution is 

taken as the input and source location as the output to 

build a reverse traceability model. BP neural network 

enables ANN to obtain minimum mean square error 

(MSE) under training samples by constantly modifying 

weights between connections and updating parameters 

during back propagation. The optimal value matching of 

neural network parameters can be determined by grid 

search. 

In order to optimize the sensor deployment and guide 

the leak investigation plan, the incomplete enumeration 

method is used to carry out detailed pruning, and the 

number of sensors is reduced in turn on the premise of 

ensuring the accuracy of the source location 

identification test set. In addition, an intelligent sorting 

algorithm module is embedded in the output part of the 

neural network model, and the intelligent 

recommendation for the leak source location of each 

input sample is completed according to the possibility 

score output in the BP neural network classifier. 

2.3 Traceability process

First, the POD algorithm is used to quickly obtain 

forward simulation data of a large number of 

intermediate working conditions, and the original 

augmented data set is further normalized. Then, the 

random forest method is used to carry out feature 

selection and overall pruning, then carry out stratified 

sampling and data segmentation, and finally use BP 

neural network to identify the possible locations of 

pollution sources and expand the model's leakage 

inspection sequence guidance function. Figure 2 shows 

the reverse traceability process in this document. 

Fig. 2. Overall process of reverse traceability.

3 Case experiments and model 
validation

3.1 Case simulation and data preparation

In this paper, experiments and model verification are 

carried out based on a case study of a typical multi-

source environmental laboratory [9]. See Figure 3 for 

indoor pollution source distribution and facility layout. 

Lin et al. [10] carried out a large number of ventilation 

experimental studies in this laboratory, which can be 

used to verify the accuracy of numerical simulation in 

this paper. 

Fig. 3. Geometric model of typical environmental laboratory 

case.
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In this paper, 20 groups of independent identically 

distributed sampling under air supply parameters were 

carried out for the above typical case [11]. It is proved 

that the numerical simulation results can be highly fitted 

with the experimental data. POD interpolation method 

was used to expand 180 simulated conditions from 9 

source locations to 5643 conditions. The data set 

segmented by automatic random sampling was divided 

into a training set containing 4518 samples and a test set 

containing 1125 samples, and the 9 types of label data 

were evenly distributed. 

The results of the forward numerical simulation show 

that the pollutant concentration distribution near the wall 

surface can be used as the analysis and training basis of 

multi-pollution source identification model. In this study, 

a total of 415 initial sampling points were set evenly on 

the left wall, right wall, back wall and near ceiling wall. 

The sensor layout will be further optimized through 

feature selection in the future. 

3.2 Experimental analysis and model 
application

The search objective of gradient anomaly grid search is 

to find the best parameter combination scheme to 

optimize model effect [12]. Based on the grid search 

optimization model parameters, this paper analyzed the 

model training time cost and source identification 

effectiveness before and after data pre-treatment, as 

shown in Table 1. The results show that the data pre-

processing strategy can greatly improve the training 

efficiency of the model and reduce the computational 

cost. The redundant features of the extended data set are 

removed, which effectively avoids the over-fitting of the 

training set in the process of model training, and the 

generalization ability of the neural network source 

recognition model is strengthened. 

Table 1. Comparison table of cost and validity of model 

calculation before and after Norm-RF data pretreatment.

comparision project Before data 
pre-processing 

After data pre-
processing 

Number of features 415 10 

Data set size /M 26.65 0.74 

Training time /min 1020 25 

Accuracy of training set /% 100.00  99.29  

Accuracy of test set /% 97.20  99.38  

 

BP neural network model is used to carry out reverse 

tracing. After random forest feature selection, sensor 

deployment positions are reduced from the initial 415 

sampling points to 10 important feature positions as 

shown in Figure 4. The accuracy of the test set is up to 

99.38%, which can meet the actual requirements of rapid 

and accurate identification of pollution sources. 

 
a

b  

   
c

Fig. 4. Random forest feature selection location distribution 

map of 10 important features (a) One sensor on the left wall 

of the left view; (b) Three sensors on the left wall of the right 

view Top view; (c) 6 sensors on the ceiling.

3.3 Function expansion and effect verification

3.3.1 Sensor Deployment optimization

This paper proposes to use the incomplete enumeration 

method for detail pruning to gradually reduce the number 

of features. 

In this paper, the sensor layout scheme is optimized 

under the premise that the accuracy threshold of source 

location identification is 95%. The accuracy of the 

source location recognition model is cross-verified for 

each layout scheme, and then the layout scheme with the 

highest accuracy is selected as the optimization strategy. 

It can be seen from Figure 5 that the reduction of the 

number of sensors is an important factor to reduce the 

accuracy of the source location recognition model, and 

grid search can improve the accuracy of the model to the 

maximum extent in the process of model training.

Fig. 5. Accuracy of source position recognition model with 

different number of sensors in detail pruning process.

When the number of sensors arranged in the room is 

reduced to 4, the accuracy of the source identification 

model test set based on layout scheme 8 can still remain 

above 95%. This extended function can provide effective 

guidance for the deployment of on-site traceability 

sensors. Figure 6 shows the effect difference between 21 

layout schemes of four sensors. 
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Fig. 6. Source position recognition model accuracy of 21 

layout schemes with 4 sensors.

3.3.2 Sequence guidance for leak detection

This paper expects to further give the possible ranking of 

the location of the pollution source, so as to guide the 

staff to investigate. 

This paper compares the source location likelihood 

ranking with the location label of the real leak source in 

turn. When the source position with the leak possibility 

ranked first is the real leak position, the one-time 

identification of the representative model is correct. We 

expect to obtain a source location identification model 

with high accuracy, and obtain the exact location of the 

source as much as possible under the premise of reducing 

the number of inspections. Table 2 shows the validation 

results of the intelligent recommendation algorithm.

Table 2. Summary of validity verification results of 

intelligent recommendation algorithm.

Number of 
screening Once Twice Three times

Accuracy /% 95.20 99.82 99.91  

The results show that the intelligent positioning 

algorithm proposed in this paper has a probability of 

more than 95% of accurately finding the location of the 

leak in one time, and the probability of finding the 

location of the pollution source within three times is 

close to 100%. It can meet the on-site application 

requirements of pollution source location identification 

and improve the efficiency of investigation. 

4 Conclusion
This study proposes a set of pollution source 

identification framework, which can realize on-site rapid 

source traceability and leakage investigation guidance. 

The specific conclusions are as follows: 

(1) The use of POD method for data set expansion 

can replace traditional numerical simulation to a certain 

extent, breaking the limitation of high computational 

cost of forward method. 

(2) The random forest algorithm is suitable for the 

simplification and screening of the input data set of the 

source identification model. The data pre-processing 

process should follow the order of normalization first 

and then filtering features. 

(3) The model expansion function realizes optimized 

sensor deployment, which can guide leak investigation 

and effectively improve investigation efficiency. 
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