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Abstract. In this study, to predict unsteady temperature distributions, POD-DNN was utilized, where DNN 

was trained to predicted coefficients of POMs. Two strategies, flatten POD-DNN and nested POD-DNN 

were compared. The flatten POD-DNN provided high accuracy if training data is sufficient, but otherwise 

very inaccurate. The nested POD-DNN roughly predicted the development of temperature fields even 

training data was small. The results showed their different sensitivities to the training data size. 

1 Introduction 
For efficient energy consumption of buildings, 

predicting the detailed indoor thermal environment, 

such as temperature and velocity distributions, is 

essential. Computational fluid dynamics (CFD) has 

been widely utilized to simulate the detailed building 

environment. But the time cost of CFD is expensive.  

Some improved methods have been developed to 

reduce the computing time of CFD, such as FFD [1] and 

rCFD [2]. And recently, machine learning (ML) is 

introduced to speed up the prediction for its ability to 

build nonlinear relationships between boundary 

conditions and the indoor thermal environment rapidly 

[3]. The basic practice is training a deep neural network 

(DNN) by the results of CFD, and the well-trained DNN 

is hoped to predict temperature and velocity 

distributions of cases with other boundary conditions. 

But, as a data-driven method, DNN only fits data 

without understanding the flow structure of airflow 

development. Ottino et al. [4] introduced an ML-based 

reduced-order model (ROM) approach for indoor 

environment prediction. In that paper, proper orthogonal 

decomposition (POD) was used to extract an optimal set 

of orthonormal bases (modes) and calculate their 

combination coefficients from CFD results.  A DNN 

was trained to predict combination coefficients of 

modes. Because these modes produced useful 

information of flow structures [5], by combining modes 

according to predicted coefficients, the building 

environment can be predicted under the guidance of 

some flow characteristics. The approach did well in 

steady-state indoor flow prediction. But the unsteady 

prediction application is remained.  

In this study, the POD-DNN approach is utilized to 

predict unsteady state indoor temperature distributions 

with alternative boundary parameters. POD was used to 

extract characteristic modes. DNN is trained to output 
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combining coefficients of these modes to predict 

temperature distributions. For an unsteady problem with 

alternative parameters, by taking time and parameters 

into consideration, different strategies used to extract 

modes influenced the accuracy of predictions. In this 

study, two kinds of POD strategies, flatten POD and 

nested POD, were researched to investigate their 

influence on the prediction accuracy.  

2 Methodology 

2.1 Introduction of POD 

POD analysis, also known as principal component 

analysis (PCA), is a method to extract the eigenvectors 

and eigenvalues of a matrix. And the matrix can be 

reproduced by combining the eigenvectors according to 

the eigenvalues, as shown in Eq. (1): 

�(�, �) = � ��(�)��(�)                                (1)  
�

	
 

where �
 is eigenvectors and �
 is coefficients. By the 

POD analysis, a reduced set of data [��(), … , ��()], 

namely POD modes (POMs), can be extracted from an 

original temperature field. These POMs provide useful 

information on temperature field structures. In practice, 

the coefficient relates to time and boundary condition 

parameters. If coefficients are precisely predicted from 

time and boundary parameters, complex temperature 

fields can be reconstructed quickly by combining them 

with only a few basic modes. 

2.2 POD-DNN 

DNN is good at fitting non-linear relationships between 

input values and output values. In this study, DNN is 

introduced to predict coefficients from inputs of time or 
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boundary parameters. Unsteady temperature fields are 

predicted by combining POMs and coefficients 

predicted by DNN. The POD-DNN prediction process 

is mainly divided into four parts: (1) conducting 

unsteady CFD simulation of different boundary 

parameters to build a database, and dividing them into a 

training set, validation set, and testing set, (2) extracting 

POMs and coefficients from the training set, (3) training 

DNN by the coefficients of the training set and 

predicting coefficients of testing set, (4) combining 

POMs according to the predicted coefficients to 

reconstruct testing set.  

For an unsteady problem with alternative boundary 

parameters, taking time and parameters into 

consideration makes it a multidimensional problem.  it 

is important to find a proper way to extract POMs. In 

this study, two POD strategies combined with DNN are 

compared: flatten POD-DNN and nested POD-DNN.  

2.2.1 Flatten POD-DNN 

The process of flatten POD-DNN is shown in Fig. 1. 

Considering a CFD model with grid numbers of � , 

temperature field T (pn, ts) is simulated, where pn and ts 

mean boundary parameter vectors and time, respectively.  
For each pn, there is a time series set of temperature field 

�(��) = [� (��, �	)| … |� (��, ��)]  , which is a two-

dimensional matrix shaped as � × �. Then the matrix 

�(��) is flatten to a vector �(��). POMs of parameter-

trajectory [��, … , ��] and coefficients of training cases 

Fig. 1. Process of flatten POD-DNN. 

Fig. 2. Process of nested POD-DNN. 
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[�(��), |  … | �(��)]  are calculated from POMs and 
[�(��), |  … | �(��)]. Trained by coefficients of training 

cases, DNN is used to predict coefficients of testing 

cases.  �(�)  of the testing case is predicted by 

combining predicted coefficients and the POMs. Finally, 

the �(�) is sliced through time-trajectory. 

2.2.2  Nested POD-DNN 

 This method is introduced by Wang et al. [6]. Fig. 2 

shows the process. In this method, POMs are extracted 

by applying POD two times. The first time, POMs �(pn) 
are extracted from �(��) for each boundary parameter 

pn. The second time, final POMs [��� , … , ��� ]  are 

extracted from [�(��)| … |�(��)]. Then, coefficients 

relating to time and parameters are calculated from T (pn, 
ts) and the POMs. The set of coefficients are used to train 

a DNN. The trained DNN is applied to predicted 

coefficients of testing cases by inputting parameters and 

time. Finally, the POMs are combined according to 

predicted coefficients to predict temperature fields of 

testing cases. 

2.3 A two-dimensional indoor problem 

 Temperature distributions of a two-dimensional indoor 

space, shaped as 6.0 m (x) × 3.0 m (y), were investigated. 

Fig. 3 shows the outline of the target space. One inlet 

boundary and one outlet boundary were set near the 

floor and at the centre of the ceiling, respectively. And 

one window was across from the inlet boundary. The 

lengths of the inlet boundary, outlet boundary, and 

window were 0.2, 0.2, and 2 m, respectively. The 

window was set to a fixed temperature to exchange heat 

by convection. Other envelopes were assumed to be 

adiabatic.  

 The database was built by CFD simulation. Settings 

of the CFD simulation are shown in Table 1. STAR 

CCM+ v14.06.013 was employed for the CFD 

simulation in this study. The initial values of the 

temperature and velocity fields were set to 27 °C and 0 

m/s, respectively. The alternative boundary parameters 

space consists of three kinds of boundary conditions: 

inlet air velocity Uin, inlet air temperature Tin, window 

surface temperature Tw. Values of them are provided in 

Table 1. Cases are named by parameter set: (Uin, Tin, Tw), 

for example, (1.0, 18, 35) means the case whose Uin, Tin, 

Tw is 1.0 m/s, 18 ˚C, and 35 ˚C. The time of each 

simulation was in a range of 0 to 300 s, where the time 

step was set to 0.1 s. But only results of selected time 

points were used to obtain the dataset (the first second, 

every 5 seconds from 5 to 100 s, every 10 seconds from 

110 to 200 s, and every 20 seconds from 220 to 300 s).  

The CFD database was separated to training set, 

validation set, and testing set by boundary parameters. 

Two training scenarios were compared for each POD 

strategies. In one scenario, case (0.25, 16, 35), (1.0, 16, 

35), (0.25, 22, 35), (1.0, 22, 35), (0.25, 16, 45), (1.0, 16, 

45), (0.25, 22, 45), (1.0, 22, 45) and (0.75, 18, 40) were 

selected as training cases (9 cases in 48 cases), (0.25, 20, 

45), (0.5, 18, 40), (0.75, 16, 35) and (1.0, 20, 40) were 

validation cases, and others were testing cases. In the 

other scenario, (0.25, 16, 40), (0.25, 20, 45), (0.25, 22, 

45), (0.5, 16, 40), (0.5, 22, 45), (0.75, 18, 35), (0.75, 20, 

35) and (1.0, 18, 35)  were selected as testing cases, 

(0.25, 18, 45), (0.5, 18, 40), (0.75, 22, 40) and (1.0, 20, 

35) were validation cases, and others were training cases 

(36 cases in 48 cases).   In addition, the purpose of this 

study is to reproduce CFD database via DNN, the 

validity of the CFD database is not paid attention to. 

Regarding DNN prediction, the process is mentioned 

in Section 2.2. Parameters Uin, Tin, Tw were input to the 

flatten POD-DNN, on the other side, time ts and 

parameters Uin, Tin, Tw were input. Coefficients of POMs 

were output. Both input and out data were normalized 

by transferring them to a range of 0 to 1. A dense DNN 

with 34 hidden layers was used, where there were 64 

nodes in each hidden layer. Activation function, 

optimization algorithm, and loss function were set to 

ELU, Adam, and mean squared error, respectively. 

3 Results 
Contour figures of a testing case (0.5, 16, 40) were 

shown in Fig.4 to check prediction accuracy. In the 

results of CFD, a vortex in low temperature gradually 

became larger and moved away from the inlet until it 

filled the entire space. Regarding results of the flatten 

POD-DNN, when the training set was large, the 

prediction results were almost the same as the CFD 

results. However, when the training set was small, there 

were obvious multiple vortexes, different from the 

results of CFD, showing low accuracy. For the nested 

POD-DNN, when the training set was large, compared 

with the flatten POD-DNN, there was more noise, and 

Table 1. Settings of CFD simulation  

Items Conditions 
Employed code Star CCM+ V14.06.013 

Dimension 6.0 m (X) × 3.0 m (Y) 

Object Air (Incompressible) 

Analysis Method 
Transient Analysis (0 s~300 s, 

Interval: 0.1 s) 

Turbulent model Realizable k-ε model 

Mesh size 0.05 m×0.05 m 

Inlet boundary 

Fixed temperature Tin 

Fixed velocity Uin 

Turbulent intensity: 4% 

Outlet boundary Free outflow 

Wall Non-slip, wall-function, adiabatic 

Window Fixed surface temperature Tw, 

Boundary 

parameter space 

Uin: 0.25, 0.5, 0.75 and 1.0 m/s 

Tin: 16, 18, 20, and 22 ˚C 

Tw : 35, 40 and 45 ˚C 

Fig. 3. Outline of the target space. 
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small vortexes near the ground were not reproduced 

clearly. But generally, the development of the dominant 

vortex was well reproduced. When the training set was 

small, not like the results of the flatten POD-DNN, 

although accuracy dropped somehow, the development 

of the dominant vortex was reproduced. As a summary, 

if training data was sufficient, the flatten POD-DNN 

predicted accurately. But this method is sensitive to the 

training data size, less training data leading to obvious 

larger errors. Although there are some noises and errors, 

the nested POD-DNN can roughly predict the 

development of airflow regardless of the training data 

size, showing its less sensitivity to the training data size.  

4 Conclusion 
In this study, to predict unsteady temperature distributions, 

POD-DNN was utilized, where DNN was trained to predicted 

coefficients of POMs. Two kinds of POD strategies were 

compared. The results showed different their sensitivities to 

the training data size. The flatten POD-DNN provided high 

accuracy if training data is sufficient, but otherwise very 

inaccurate. The nested POD-DNN roughly predicted the 

development of temperature fields even training data was 

small. Reasons for the different sensitivities should be 

investigated in future works. 
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Fig. 4. Temperature distributions of a testing case, Uin=0.5 m/s, Tin=16 ˚C, Tw=40 ˚C. 
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