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Abstract. The impact of the supplied airflow rate on the distribution and exposure of exhaled airborne 
pathogens in a room with mixing ventilation was studied. Experiments were conducted in a field laboratory 

at three supply airflow rates: 20, 40, 60 L/s. Two breathing thermal manikins were used to resemble infected 

and susceptible occupants. Nitrous oxide (N2O) was dosed into the air exhaled by the infected manikin to 

simulate the emission of infectious aerosols. N2O concentration was measured in the air inhaled by the 

susceptible manikin. The measured data were used to calculate infection probability by modified Wells-

Riley model. The highest infection probability of 4.3-5.1%, obtained in the case of 20 L/s, decreased with 

increasing the supply airflow rate. The decrease slowed with the increase of the supply flow. The calculated 

infection probability based on the tracer gas concentration in the inhaled air of the exposed manikin was in 

all studied cases higher than the infection probability obtained in the occupied zone and the exhaust. The 

infection probability based on the tracer gas concentration in the inhaled air of the exposed manikin was up 

to 65% higher than the infection probability calculated by the Wells-Riley method, which assumes complete 

room air mixing.   

1 Introduction 
Infectious respiratory pathogens, such as SARS-CoV-2, 

are emitted in aerosol particles produced by disease 

carriers during coughing, sneezing, talking, and 

breathing [1,2]. Keeping the distance of 2 meters 

(6.5 feet) apart between individuals has been 

recommended to prevent viral transmission through 

large droplets [3]. However, the exhalation jet contains 

a wide range of droplets (0.01–1000 μm), and most of 

them have sizes less than 5 μm [4]. Such airborne 

particles are strongly dependent on air patterns. Within 

the first minutes after exhalation, infectious aerosols can 

travel 3 to 12 meters at typical indoor air speeds 

depending on the air distribution in the room [5–7]. 

The dominant view on airborne transmission control 

in the indoors through ventilation is based on the 

dilution of viral aerosols by the supply of outdoor and 

filtered air [8]. Most indoor transmission has been 

shown to occur in poorly ventilated spaces [7,9]. 

Therefore, the technical mitigation actions to reduce the 

transmission of pathogenic microbial aerosols (e.g., 

influenza, SARS-CoV-2, MERS) should first focus on 

meeting ventilation standards [10–12]. In general, it is 

recommended to provide an outdoor airflow of at least 

10 L/s per person, which corresponds to the 

requirements for category I of indoor air quality 

according to EN 16798 [12–16] Furthermore, the 

recommendation is to increase the rate of viral aerosol 

removal by elevated ventilation rates and/or improved 
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filtration [15,17,18]. The combined filtration should 

achieve F7 (MERV 13) or better levels of performance. 

Centers for Disease Control and Prevention (CDC) 

currently recommends adjusting HVAC systems to 

increase total airflow to occupied spaces when possible 

[19]. 

Apart from the ventilation rate, enhancing 

ventilation should also consider other parameters such 

as control of thermal conditions, airflow distribution, 

and direction. The aim of the presented work is to study 

how increasing the supplied airflow rate affects the risk 

of infection and whether it can be predicted accurately 

by the Wells-Riley model assuming complete room air 

mixing.  

2 Methodology  

2.1 Facilities and measuring equipment 

Tracer gas measurements were performed in a field lab 

(5.9×2.9×3.2 m) with two breathing thermal manikins. 

The test room was arranged as an office with manikins 

seated at desks in a straight position and at a distance of 

2 m from each other (measured from mouth to mouth), 

as shown in Fig. 1. The manikins were shaped as 1.7 m 

tall women dressed in a T-shirt, long trousers, 

underwear, socks and sneakers (the total estimated 

clothing insulation of 0.47 clo). They were controlled to 

simulate a dry heat gain from people in a thermally 
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comfortable state. Fig. 2 shows the field laboratory 

arrangement during the experiments.  

The room was ventilated with mixing air 

distribution. The air diffuser (Lindab LCA125, Lindab 

AB, Sweden) was installed in the middle of the ceiling 

at a height of 2.8 m. The diffuser was adjusted to 2-way 

air discharge to optimize its performance at the 

reference airflow rate of 20 L/s. The exhaust grill was 

installed on the wall directly below the ceiling.  

 

 

Fig. 1. Plan view of the field laboratory arranged as a two-

person office (ETM – Exposed Thermal Manikin, ITM – 

Infected Thermal Manikin) 

  

Fig. 2. Photographs of the test room during the experiments 

Respiratory-generated airborne pathogens were 

simulated by nitrous oxide (N2O) dosed into the exhaled 

air of one of the manikins acting as an infected person 

[20] at a constant rate of 0.334 L/min. The pulmonary 

ventilation rate for both manikins was 6 L/min. The 

typical breathing frequency for a person in light activity 

(1.2 met) was simulated (2.5 s – inhalation, 2.5 s – 

exhalation, 1 s – break) [21,22]. The breathing mode 

was set to exhalation through the nose and inhalation 

through the mouth. The mouths of both manikins were 

at a height of 1.15 m above the floor. 

The tracer gas concentration was measured with a set 

of multipoint sampler and a gas analyzer based on the 

photoacoustic principle with an accuracy of 2% of the 

reading (GASERA ONE, Gasera Ltd., Finland). The 

N2O concentration was measured in the inhaled air of 

the second manikin (simulating suspectable person), the 

ventilation exhaust, and the vicinity of the room. All 

measurement instruments met the accuracy 

requirements according to EN ISO 7726 [5]. Air 

temperature (accuracy of ±0.2 °C) and relative humidity 

(accuracy of ±2% in the range 10-90% RH) were 

monitored by Sensirion sensors (Sensirion AG, 

Switzerland). 

2.2 Study conditions 

The impact of supply airflow rate on airborne pathogen 

distribution and exposure at three supply airflow rates: 

20 L/s (1.3 ACH), 40 L/s (2.6 ACH) and 60 L/s 

(4 ACH). The supply rate of 20 L/s was selected as the 

reference rate based on the ventilation standards [12] 

and current coronavirus pandemic guidelines [14] The 

supply flow fluctuated within a range of ±1,5 L/s. The 

supply air was 100% outdoor air. Exhaust airflow was 

controlled to maintain a 0.1 Pa overpressure in the room. 

Room layout simulated office with two workstations. 

All other indoor environmental parameters were kept 

unchanged throughout the sessions. The room air 

temperature was kept at 22.6±0.4°C. The only heat loads 

in the room were manikins that simulated dry heat gains 

from people in the thermally comfortable state (average 

whole-body heat flux of 64 W/m2) and 6 ceiling lamps 

(38 W each). Table 1 summarizes the studied 

conditions. 

Table 1. Experimental conditions (mean ± standard 

deviation) 

Supply 
airflow 

rate 

Supply air 
temperature 

Air 
temperature 

Relative 
humidity 

20 L/s 18.0±0.9°C 22.7±0.1°C 32.5±1.3% 
40 L/s 18.2±0.8°C 22.9±0.0°C 49.5±0.4% 
60 L/s 18.5±1.6°C 22.1±0.0°C 38.2±0.4% 

2.3 Infection probability calculations 

The Wells-Riley model was used to calculate the 

reference infection probability: 

 

              � = 1 − ������/	       (1) 

 

where P is the infection probability, I is the number 

of infected persons in the room; p is the pulmonary 

ventilation rate (m3/h); q is the quantum generated rate 

(quanta/h); t is the exposure time (h); and Q is the supply 

flow rate (m3/h). 

For our calculation, we assumed that q is equal to 

2 quanta/h (corresponding to the quanta emission rate 
for SARS-CoV-2 of a sitting and non-speaking person 

[2]). The exposure time, t, was considered to be 6 hours. 

Obtained in such a way, infection probability values 

are based on the complete room air mixing assumption. 

In practice, this is rarely the case; therefore, we used the 

dilution ratio (DR) to analyze the obtained tracer gas 

measurements [23]:   

 

              
� = ��         (2) 

 

where E0 was the N2O concentration in the exhaled 

air of the infected person (N2Oexhaled air = 22669 ppm) 

and E was the average N2O concentration (ppm) 

measured in analyzed point (inhaled air of the exposed 

person or one of room points. 

As a result, the original Wells- Riley model was 

revised to: 

 

              � = 1 − ����/��       (3) 

E3S Web of Conferences 356, 05001 (2022) 

ROOMVENT 2022

https://doi.org/10.1051/e3sconf/202235605001

 

2



 

 

 

The standard uncertainty of the infection 

probabilities was calculated using Equation (4):  

 

   �� = �� �������,�������� ∙ �����,�������� !+� �������,��"� ∙ �����,��"� !        (4) 

 

where P was the infection probability calculated 

using Equation (3), CN2O,emission was the N2O 

concentration (ppm) in the exhaled air of the infected 

person, CN2O,meas was the average N2O concentration 

measured in analyzed point. UcN2O,emission was the 

standard uncertainty due to the accuracy of the flow rate 

measurements of the tracer gas emission rate, and 
UcN2O,meas was the total uncertainty of the N2O 

measurements [24]. The expanded combined 

uncertainties of the infection probabilities are reported 

at a 95.45% confidence interval with a coverage factor 

of 2. 

3 Results and Discussion 
The impact of airflow rate on infection probability is 

shown in Fig. 3. The highest infection probability of 4.9-

5.8% was obtained in the case of 20 L/s, depending on 

the measurement point. The probability of infection 

based on the N2O concentration measured in the air 

inhaled by the susceptible manikin decreased with 

increasing airflow from 20 L/s to 40 L/s. Further 

increase of the supplied flow rate to 60 L/s leads to a 

slight increase in infection probability. Similar 

phenomena have previously been observed [25,26]. The 

infection probability calculated based on the 

measurements in the exhaust and the occupied zone 

decreased with the increase of the supplied flow rate.  

The infection probability based on the tracer gas 

concentration in the inhaled air of the exposed manikin 

was different and, in all studied cases, higher than the 

infection probability obtained in the occupied zone and 

the exhaust.  

 

 

Fig. 3.  Infection probability depending on the airflow rate 

and sampling point 

The relative differences in infection probability 

calculated for the inhaled air and the remaining points 

(exhaust and occupied zone) increased with increasing 

airflow rate, as shown in Fig. 4. At the supply flow rate 

of 60 L/s, the difference in the infection probability 

based on inhaled air calculations and calculations for the 

other measured locations was up to 51%. The measured 

probability of infection in inhaled air at 60 L/s was also 

65% higher than the value obtained with the original 

Wells-Riley model (Equation 1), assuming perfect room 

air mixing.  

 

 

Fig. 4. Infection probability - relative differences between 

points for each experimental case depending on airflow rate 

4 Conclusions 
The results presented in this paper indicate that control 

cross-infection in the spaces solely through an increase 

in the ventilation supply rate can be misleading. An 

increase in dilution of the airborne pathogens by 

increasing the supplied flow rate may create an 

unfavourable directional flow current. As observed in 

this study, such local air currents could support the 

spread of infectious airborne pathogens in the space and 

increase aerosol inhalation instead of simply diluting 

them. 
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