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Abstract. Fast and accurate identification of source locations and release rates is particularly important for 

improving indoor air quality and ensuring the safety and health of people. Existing methods based on adjoint 

probability are difficult to distinguish the release rate of dynamic sources, and optimization algorithms based 

on regularization are limited to analysing only a small amount of potential pollutant source information. 

Therefore, this study proposed an algorithm combining adjoint equations and regularization models to 

identify the location and release intensity of pollutant sources in the entire computational domain of a room. 

Based on the validated indoor CFD computational model, we first obtained a series of response matrices 

corresponding to the sensor position by solving the adjoint equation, and then used the regularization method 

and Bayesian inference to extrapolate the release rate and location of dynamic pollutant source in the room. 

The results shown that the proposed algorithm is convenient and feasible to identify the location and 

intensity of the indoor pollutant source. Compared with the real source intensity, the identification of 

constant source intensity is lower than the error threshold (10%) in 97.4% of the time nodes, and the 

identification of periodic source is lower than the error threshold (10%) in 95.4% of the time nodes. This 

research provides a new method and perspective for the estimation of indoor pollutant source information. 

1 Introduction 

A good indoor environment contributes to people's 

comfort and work efficiency and, more importantly, 

reduces the probability of infection from various 

diseases [1,2]. Therefore, it is very necessary to develop 

a fast and accurate indoor pollutant source identification 

strategy. 

Kathirgamanathan [3] et al. accurately recover the 

release history and release rate of full sampled data 

based on linear least squares regression and Tikhonov 

regularization. The accuracy of the regularization 

method for estimating source intensities has been well 

verified in both 2D and 3D space [4,5]. Liu [6] and 

Zhuang [7] used regularization method combined with 

Bayesian probability to successfully locate pollutant 

sources. However, the above-mentioned studies based 

on the regularization method need to predict the location 

of the pollutant source in the room, and the process of 

obtaining the response factor is cumbersome. 

Liu et al. applied the adjoint method to indoor 

environments, illustrating the method of inverse 

modeling using the example of air pollution in office 

spaces and aircraft cabins [8,9].Subsequently, adjoint 

probabilistic methods have been extensively validated in 

various contexts. As summarized by Zhai et al. [10], an 

adjoint probabilistic approach is used to efficiently 

identify the location of attenuation sources in a building 

HVAC system. Zhou [11] et al. Use CFD simulations 

combined with adjoint methods to identify the location 

of leak sources in an underground tunnel. Although the 
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adjoint probability method can identify the release 

location of the pollutant source, it cannot estimate the 

release intensity of the pollutant source. 

According to the current research status, this paper 

combines the regularization method with the adjoint 

probability method, and validates the method based on 

the verified CFD case model, so as to apply it to the 

inversion and identification of true environmental 

pollutant sources. 

2 Methods 

When the flow field is fixed, the release intensity q of 

the source is linearly related to its concentration C 

distribution, The relationship conforms to the following 

vector/matrix form: 

 

𝑪 = 𝑨𝒒                               (1) 

 

where the pollutant concentration C can be obtained 

by arranging the sensors, and the response matrix A is 

obtained by the adjoint probability method in Section 

2.1. However, it is a ill-conditioned problem to judge the 

release intensity of the pollutant source according to the 

pollutant concentration information monitored by the 

sensor. Therefore, we introduce the regularization 

method to calculate the source intensity in Section 2.2, 

and use the Bayesian method in Section 2.3 to locate the 

source.  
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2.1 Adjoint method for the response matrix 
calculation 

Pudykiewicz [12] introduced the adjoint method into 

STE for the first time, which only needs to solve the 

adjoint advection-diffusion equation once for each 

sensor to obtain the response factor of the entire 

computational domain. The steady-state flow field in the 

computational region is simulated using CFD, and the 

flow field is reversed by importing the UDF. By 

releasing a pollutant pulse with a time step at the 

position of the pollutant sensor, the response 

concentration of the pollutant sensor to the entire space 

can be obtained by monitoring the response 

concentration in the domain. The response matrix can be 

calculated from the MATLAB code. 

2.2 Regularization method for source strength 
determination 

The core idea of Tikhonov's regularization method is to 

introduce a regularization parameter to keep the value of 

the solution within a certain range, thereby reducing and 

avoiding the oscillation or divergence of the numerical 

solution. Eq. (1) can be transformed into a linear least 

squares optimization function problem as follows: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑞) = ‖𝐴𝑞 − 𝐶‖2
2 + 𝜆2‖𝐿𝑞‖2

2         (2) 

 

where the first term on the right-hand side is the 

residual parametrization, which represents the square of 

the second parametrization of the difference vector 

between the measured concentration C and the 

calculated concentration; the second term is the 

regularization term, L is the regularization matrix, and 𝜆 

is the regularization parameter, which controls the 

weight of the minimization of the side constraint relative 

to the minimization of the residual parametrization. The 

selection of a suitable regularization parameter 𝜆 is very 

important for the accurate derivation of the source 

intensity q. Compared with other different 

regularization methods, the GCV method is relatively 

stable. Therefore, in this paper, the GCV method is used 

to calculate the regularization parameter 𝜆. 

2.3 Bayesian method for source location 
determination 

The Bayesian probability model is used to calculate the 

unknown probability of the pollutant source. The model 

determines the maximum possible location of the 

pollutant source by comparing the matching degree 

between the monitoring value and the predicted 

concentration value of the sampling point. The predicted 

concentration value is calculated by equation (1), 

according to the monitoring result O, the probability of 

the source at position 𝑌𝑘 is as follows: 

 

𝑃(𝑌𝑘|𝑂) =
𝑃(𝑌𝑘)𝐿(𝑂|𝑌𝑘)

∑ 𝐿(𝑂|𝑌𝑖)𝑃(𝑌𝑖)𝑛
𝑖=1

                  (3) 

 

where k is the location number of the potential 

source and 𝑃(𝑌𝑘) is the prior probability that the source 

is at location 𝑌𝑘. If n potential positions have the same 

probability, 𝑃(𝑌𝑘)  is equal to 1/n.  𝐿(𝑂|𝑌𝑘)  is the 

likelihood function, which can be obtained based on the 

Gaussian normal distribution construction[13]. 

3 Case setup 

The validity of the method is verified using a validated 

3D model, which is a room with a steady state flow field 

[14]. The geometry of the three-dimensional ventilation 

chamber is shown in Figure 1. The dimensions of the 

ventilation chamber are 5.16 m × 3.65 m × 2.43 m. On 

the right side of the room there is a supply vent, an 

exhaust vent in the upper part, two occupants, two 

computers, two desks, two boxes and six lights. The 

inlet temperature was 17°C and the airflow velocity was 

0.09 m/s. The turbulent kinetic energy k and dissipation 

rate εare 1.94e-05 m2/s2 and 2.53e-07 m2/s3. The 

exhaust is a pressure outlet with a gauge pressure of 0 

Pa and the temperature is 26.7°C. This 3D case and 

experimental data can be found in [14]. The velocity 

field is calculated by ANSYS FLUENT. The region is 

divided into 1022665 cells, the governing equations use 

the standard k-εmodel, the numerical method uses the 

SIMPLE algorithm, and the second-order discrete 

format for the convection and viscous terms of the 

governing equations, with a convergence residual of 

10−4 for all variables. 

 
Fig. 1. The office configuration used in the model. 

 

This study uses SF6 as a tracer gas to mimic the 

spread of contaminants in the room, which was released 

in two different source forms at the red mark through a 

porous sphere with a radius of 0.1 m. The forms of 

pollutant sources include constant source and periodic 

source, as shown in Figure 2. Five monitoring points 

were set up at the top of the room to record pollutant 

concentration information in 2s time steps. In this study, 

we only used the concentration data in the first 2500 s 

of the monitoring site to infer the source release history, 

this information can be used for the verification of the 

reverse identification of contaminants.  

The flow field is reversed using the method 

described in Section 2.2, and a unit rectangular pulse 

with a time step is released at the original monitoring 

point, as shown in Figure 3. Then 30 monitoring points 

are evenly arranged in the computational domain to 

collect concentration information for calculating the 

response factor. Considering that the comparison of 30 

monitoring points is too confusing, this study selected 6 
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special monitoring points (including the real source 

location) for comparison. 
 

 
Fig. 2. Form of pollutant source. 

 
Fig. 3. Rectangular pulse. 

4 Results 

Since the pollutant concentration information is first 

monitored by the No. 4 monitoring point, we use the 

concentration data collected by the No. 4 monitoring 

point to infer the intensity of the pollutant source, and 

then use other monitoring points to estimate the location 

of the pollutant source. Given that it is not intuitive to 

compare the 30 potential sources together, we select a 

few more specific locations to compare with the true 

source locations, as shown in Fig. 1. s1-2 represents the 

true source locations, s1-1, s1-7, and s2-2 are located 

around the true source, and s1-9 and s2-15 are relatively 

far from the true source locations. 

The relative error (NME) is introduced to compare 

the difference between the reverse calculated release 

rate and the actual source release rate, as follows: 

 

𝑁𝑀𝐸 =
|𝑁𝐼𝑅−𝑁𝐴𝑅|

𝑁𝐴𝑅,𝑝𝑒𝑎𝑘
                           (4) 

 

where 𝑁𝐼𝑅 is the reverse calculated release rate, 𝑁𝐴𝑅 

is the actual release rate. and 𝑁𝐴𝑅,𝑝𝑒𝑎𝑘 is the peak release 

rate of the actual source; in this case, 𝑁𝐴𝑅,𝑝𝑒𝑎𝑘 =

0.1𝑘𝑔/𝑚3/𝑠 .A threshold of 10% relative error was 

chosen to compare the accuracy of the estimated source 

intensities at different locations. 

4.1 Steady source 

Fig. 4(a) shows the release rate estimates for steady 

sources using monitoring point 4. It can be seen that in 

the first 1000s, s1-2 is close to the true source intensity 

first, while the source intensities at other locations are 

estimated to have larger fluctuations, or have obvious 

deviations from the true source. After 1000s, the source 

intensity estimates stabilize at each location, but it is 

clear that s1-2 matches the true source more closely, 

although s1-9 is also close to the true source, but has 

been fluctuating up and down. Therefore, according to 

the overall source intensity estimation results, s1-2 is 

more consistent with the real source intensity, and the 

number of time nodes less than the relative error 

threshold accounts for 97.4%, which is a preliminary 

proof that the method is effective.  

Fig. 4(b) shows the estimation of the location of the 

pollutant source using the data of other monitoring 

points. It can be seen that s1-2 is obviously more 

probable than other locations, whether it is s1-1 which 

is closer to the true location or far from the true location 

s2-15, the probability quickly dropped to almost 0 at the 

beginning. Although the probability of other positions 

does not tend to 0, it is still obviously less probable than 

s1-2. The results once again confirm that this method is 

also effective for estimating the position of the source. 

 
(a) 

 
(b) 

Fig. 4. STE results for steady source. (a) Pollutant source 

intensity estimation. (b) Pollutant source location estimation. 

4.2 Period source 

Fig. 5(a) presents the release rate estimates for periodic 

sources using monitoring point 4. It can be seen that the 

source intensity estimates at all locations exhibit 

periodic characteristics, but s1-2 is clearly more 

consistent with the true source waveform, and other 

locations show more severe vibrations. Compared with 
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the true source, the number of time nodes below the 

relative error threshold accounts for 95.4%. Therefore, 

based on the overall analysis results, the method can still 

accurately calculate the true source intensity. 

Fig. 5(b) shows the estimation of the periodic source 

location using data from other monitoring points. It can 

be seen that during the period source release, the 

probability of the s1-2 position is much higher than that 

of the other positions. During the stop release period, 

although the probability of s1-2 is smaller, it is still 

higher than the other positions. 

 

 
(a) 

 
(b) 

Fig. 5. STE results for period source. (a) Pollutant source 

intensity estimation. (b) Pollutant source location estimation. 

5 Conclusion 

The accurate location of indoor pollutant sources is of 

great significance to ensure the health and safety of 

personnel. In this study, the regularization method is 

combined with the adjoint probability method to 

perform reverse identification of indoor pollutant 

sources. The performance of the proposed method was 

evaluated by comparing it with the intensity and location 

of real pollutant sources. It is found that the number of 

time nodes with relative error of source release rate 

below the threshold (10%) is 97.4% in the constant 

source flow field, while the number of time nodes with 

relative error of source release rate below the threshold 

(10%) is 95.4% in the steady-state flow field of periodic 

sources. The method shows superior results in source 

localization.  
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