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Abstract. The large increase in the on-road vehicle population in China has 
raised sustainability concerns regarding air pollution prevention, energy 
conservation, and climate change mitigation. Vehicle emission inventory is 
an irreplaceable tool to characterize the temporal and spatial distribution of 
the air pollutant and provide guidance to the policy makers with effective 
vehicle emission controls. This review paper reviewed two kinds of typical 
vehicle emission inventories. The top-down vehicle emission inventories is 
calculated based on the static datasets (e.g., vehicle population, vehicle 
kilometer traveled, and fuel consumption). These inventories could track 
historical emissions abatement progress and examine potential benefits from 
future regulations. The technological evolution in intelligent transportation 
systems have facilitated emission inventories to satisfy the increasing 
sophisticated management demand. The bottom-up link-level vehicle 
emission inventories are development based on the availability of the real-
world traffic profiles. To simulate the temporal and spatial patterns with 
high-resolution, traffic demand model and machine learning methods are 
employed to elucidate traffic emissions.

1 Introduction

China has been embracing rapid motorization over the past two decades with a 14.1% 
annual average growth rate of vehicle population as result of the rapid social and economic 
growth[1]. Vehicle ownership density is a widely used indicator to represent the motorization.
The ownership of light-duty passenger vehicles (LDPVs) per thousand people increased from 
6 in 2000 to 108 in 2016, an 18-fold increase over 16 years. Over the same time, the increased 
rates of ownership of LDPVs per thousand people in the European Union and the United 
States are 23%[2] and 2%[3], respectively (See Fig. 1).
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Fig. 1. The ownership of LDPVs per kilo people in China, the EU, and the USA, 2000-2016: (a) 
vehicle population, units in million, and (b) ownership of LDPVs per thousand people, units in veh 
per thousand people.
Note: The data markers in panel (a) represent the vehicle population in 1990, 2000, 2010, and 2016 
for the USA; 2000, 2010, and 2016 for the EU; and 1990, 2000, 2010 and 2019 for China.

The rapid motorization poses substantial challenges for China concerning assuring energy 
security and alleviating global climate change[4]. The petroleum consumption increased from 
440 million tons in 2010 to 660 million tons in 2019, and the external dependence increased 
from 54% to 71% during the same period. On-road vehicles are a major driver for the surge 
of fuel demand accounting for approximately 48% of petroleum consumption. The Chinese 
government has announced its goals to peak CO2 emissions before 2030 and achieve carbon 
neutrality by 2060. the Chinese government should make more efforts to focus on energy 
conservation and the CO2 emission reductions in the transport sector. It is necessary for China 
within the time framework to make substantial progress to improve transportation system 
efficiency, lower energy consumption for fossil fuel powered vehicles and substantially 
increase the usage of low carbon on-road fuels

The dramatic increase in vehicle population has also triggered serious air pollution.
Vehicle emissions has become the largest contribution to city air pollution (e.g. CO, NOX,
and PM2.5). Many megacities in China are facing with similar environmental challenges. 
Beijing’s annual concentration of PM2.5 in 2020 was 38 μg m-3. Although this value was 
reduced by 42% as opposed to that in 2013, it still exceeded the limit of China’s national 
ambient air quality standard (35 μg m-3). The recent official source apportionment results of 
PM2.5 indicated that vehicle emissions were the largest local contributors to ambient for PM2.5

concentrations in five cities (Beijing, Shanghai, Guangzhou, Shenzhen, and Hangzhou)
megacities in China[5] (See Fig. 2).
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Fig. 2. The official source apportionment results of PM2.5 pollutions for megacities in China.

The air pollutants from on-road vehicles have adverse health impacts[6]. The emission 
from heavy duty trucks have been confirmed human carcinogen. The European Environment 
Agency (EEA) reported that 94% of the monitoring sites whose NO2 concentration are 
exceeded the limits are traffic-related sites. The EEA are further estimated that around 70,000 
premature deaths are due to the NO2 exposure. Jerrett et al.[7] found out significant positive 
correlation between the traffic–related NO2 concentrations mortality in California.

Vehicle emission inventory is an irreplaceable tool to characterized the spatiotemporal 
distribution of the air pollutant and provide guidance to the policy makers with effective 
vehicle emission controls. This review paper aims to summarize the basic methodology and 
necessary data to development the two kinds of typical vehicle emission inventories (i.e. top-
down and the bottom-up vehicle emission inventories). Based on the review, this paper 
further has a discussion on the comparison of the two kinds of inventories and the future 
trends of the development of vehicle emission inventories.

2 Research on vehicle emission inventory

2.1 Top-down vehicle emission inventory

The top-down vehicle emission inventory is calculated based on registered population by 
vehicle category, as Eq. 1 illustrates.

6
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where Ep,y is the total emissions of pollutant p during the certain period y, units in t; VPvc,f,y,va

is the vehicle population defined by vehicle category vc, fuel type f, and vehicle age va in the 
certain time period y, units in veh; VKTvc,f,y,va is the fleet-average vehicle kilometers traveled 
of vehicle category vc, fuel type f, and vehicle age va in the certain time period y, units in km 
veh-1; EFvc,f,y,va,p is the fleet-average emission factors of pollutant p of vehicle category vc,
fuel type f, and vehicle age va in the certain time period y, units in g km-1;

As the Eq. 1 illustrates, the top-down emission inventory is calculated based on annual 
statistics data, which is commonly used to characterize the total emission trends in a large 
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area and a long period. There are relatively more sophisticated emission inventories overseas. 
The Long-range Transboundary Air Pollution (LRTAP) released by the EEA is developed 
based on the emission inventories reported by its member states. The on-road emission 
inventories of LRTAP are mainly calculated based on the fuel consumption and vehicle 
registration data. The National Emission Inventory (NEI) reported by the US Environment 
Protection Agency (EPA) employs the similar approach to established the national and 
county inventories.

Since the methodology to establish the emission inventories is relatively simple and the 
vehicle population and the fleet-average VKT are commonly from the statistical data, the 
researchers who established the top-down vehicle emission inventory often attempt to track 
historical emissions abatement progress and examine potential benefits from future 
regulations. Wu et al.[8] established the top-down vehicle emission inventory in China to 
illustrate vehicle emission trends during 1998-2013 and the spatial patterns of the emissions 
at the provincial resolution. Based on the province-level emission inventory, China's first 
fifteen-year efforts in controlling vehicles emissions was assessed. Wu et al.[9] further 
evaluated the vehicle emission reductions by designing comprehensive control scenarios 
based on the Wu’s datasets and methodology, and provided detailed policy roadmaps and 
technical options related to these future emission reductions for governmental stakeholders. 
Both these researches employed a localized emission model named Emission Factor Model 
for the Beijing Vehicle Fleet Version (EMBEV 2.0). The EMBEV model was developed 
based on thousands of in-lab dynamometer tests and hundreds of on-road tests. Now, the 
EMBEV methodology and key parameters have been essentially referred to by China’s 
National Emission Inventory Guidebook. Zheng et al.[10] built a GHG emission inventory to 
predict vehicular GHG emissions on provincial basis based on the statistic fuel consumption, 
and proposed an integrated policy to peak GHG emissions of 90% provinces and whole China 
by 2030.

Although previous top-down emission inventory could convincingly support the policy 
makers with vehicle emission mitigation strategies, some major limitations have not been 
addressed. The top-down emission inventory is developed based on the registered data 
lacking temporal and spatial associations with real-world traffic patterns. Recently, the 
growing awareness of urban sustainability across the world has increased the needs for 
dynamically managing the road transportation systems within the cities and communities, 
which has spurred a research focus on developing bottom-up high-resolution road 
transportation emission inventories, including emission inventories evaluated at street levels.
We will have a detail discussion on this kind of inventories in the next section.

2.2 Bottom-up vehicle emission inventory

There are three main motivations for preparing high-resolution road emission inventories. 
First, sustainability challenges are more significant in populous urban areas and traffic 
hotspots where vehicle usage is more extensive than rural or remote locations. Second, 
bottom-up emission inventories are useful to address local land use and transportation 
planning policies, because they are more representative of actual vehicle usage than 
conventional approaches based on macro-scale and static profiles of vehicle registration or 
fuel consumption. Third, traffic management systems have been adopted by many municipal 
governments (e.g., congestion fee and low emission zone programs in London, UK; license 
control and traffic restrictions in Beijing, China) and these systems require fine-grained tools 
to assess policy efficacy.

It should be noted that the bottom-up vehicle emission inventory referred in this paper is 
developed based on the real-world traffic datasets with the high temporal resolution of hour 
and the high spatial resolution of road segment level (~500 m in the urban core area). For 
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each road link, the hourly emission is the product of traffic volume, link length and speed-
dependent factors (See Eq. 2)

, , , , ,EF ( ) TVh j l c j c h l l
t

E v L= × ×∑              (2)

where Eh,j,l is the total emission of pollutant j on road link l at hour h, units in g h-1; EFc,j(v)
is the average emission factor of pollutant j for vehicle category c at speed v, units in g km-1;
TVc,h,j is the traffic volume of vehicle category c on road link l at hour h, units in veh h-1; Ll

is the length of road link l, units in km.
However, limited by the sparseness of the real-world traffic profiles, many current 

researches could not reach the high temporal and spatial resolution as mentioned above. Some 
bottom-up inventories established using the artificial allocation methods based real-world 
traffic profiles or spatial surrogates (e.g., population density, road length density) that could 
be the input of the air quality simulation models are included in this section.

Due to the technological difficulties in data mining, traffic data availability is a significant 
challenge in characterizing real-world spatial and temporal distributions of vehicle 
emissions.[11] As high-resolution emissions are essentially required by air quality simulations, 
other accessible spatial surrogates are used to artificially allocate total vehicle emissions into 
fine spatial cells. Population density and/or road length density are two typical varieties of 
spatial indicators to allocate vehicle emissions by assuming linear relationships between 
vehicle emissions and spatial surrogates.

Zheng et al.[12] introduced allocation weights according to the road type (e.g., highways, 
national roads, provincial roads, and county roads) to assign the county-level emissions onto 
0.05° × 0.05° grids based on the China Digital Road-network Map (CDRM). Zheng et al.[13]

proposed an allocation method to develop the vehicle emission inventory in the Pearl River 
delta region based on the standard road length instead of actual road length which uses road 
length density as the spatial indicators to allocate the vehicle emissions by further considering 
the influence from the road type and the distinctions between urban and rural areas. Further 
comparison was made between this method and the traditional method assuming the liner 
relationship between the emission intensity and the population density by comparing the 
modeled pollutant concentrations (e.g., ozone) with the observed ones. The air quality 
simulation results showed that Zheng’s method could improve the accuracy of model 
predictions for fine-resolution modeling application. However, such top-down allocations are 
often questioned with respect to the accurate representation of real-world traffic activity.

In the US, annual averaged daily traffic (AADT) data are reported annually by the 
Highway Administration, which are used to establish high-resolution vehicle emission 
inventories from city to national scales. Gately et al.[14, 15] reported high-resolution road CO2

emission inventories for Massachusetts and the US. The results indicate that the top-down 
approach based on macro-scale parameters may lead to deviations in the central districts that 
are as large as 500%. Open-access traffic count data, such as the AADT data, usually provide 
annual averaged characteristics and lack finer temporal resolution. 

However, first, the AADT data use the traffic profiles of some road links that are reported 
in “Sample Panel”, a select portion of a given roadway system, to represent “Full Extent” of 
the systems. Second, some empirical assumptions and adjustments of VKT are often used to 
downscale state-level or national-level AADT profiles to county-level traffic patterns. Both 
of these factors could result in the estimated spatial variations in traffic volumes may not 
represent real-world patterns. Furthermore, the AADT datasets are updated per year 
according to the submission from all states annually, the collection and process of the traffic 
data prevent the establishing the real-time inventory to reflect the temporal patterns. 
Therefore, the AADT datasets could support the analysis of seasonal or day-of-week 
variations, but are limited to calculate road emissions in hourly or even finer temporal 
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resolutions. To improve the temporal resolution, McDonald et al.[16] used 70 weigh-in-motion 
detectors in California to resolve diurnal and weekly variations for road CO2 emissions, but 
still could only distinguish gasoline and diesel fleets in a coarsely aggregated way.

The technological evolution in intelligent transportation systems have facilitated emission 
inventories. Gately et al.[17] applied GPS-informed speed data from mobile phones and 
vehicles to map emission fluxes from vehicles in Boston. In addition to such trajectory data,
open-accessed traffic congestion indexes could be also derived from navigation companies 
or municipal government agencies to dynamically estimate road speeds. For traffic volume 
and mix, radio-frequency identification (RFID) and traffic camera are capably of reporting 
detailed vehicle counts by license plate number8. These real-world traffic datasets be useful 
to elucidate temporal and spatial variations in traffic emissions.

To capture the traffic volume of each road segments and avoid the uncertainty due to 
simple empirical assumptions, transportation demand modeling has been utilized to assist the 
development of emission inventories. Transportation demand modeling includes the traffic 
equilibrium model and the traffic speed-flow model. Xie et al.[18] developed an integrated the 
microscopic traffic simulation model (i.e., PARAMICS) and the traffic emission model (i.e., 
MOVES from US EPA) to calculated the link-level emissions on a well-calibrated road 
network in Greenville, South Carolina to evaluate the fuel consumption impacts. Abou-Senna 
et al.[19] presented an approach to capture the environmental impacts of vehicular operations 
on a 10-mile stretch of Interstate 4 (I-4), an urban limited-access highway in Orlando, Florida
by using the traffic demand model (i.e., VISSIM) to analyze the average speed and traffic 
volumes of the highway. Zhou et al.[20] allocated the vehicle emission into the grids in the 
urban area of Beijing by a transportation simulation platform based on a transportation 
demand model (i.e., TransCAD), and evaluated the emission reduction from the vehicle 
emission controls during the 2008 Olympics. The results suggested that reasonable traffic 
system improvement strategies along with vehicle technology improvements can contribute 
to controlling total vehicle emissions. Jing et al.[21] presented a bottom-up methodology based 
on the near-real-time traffic data on road segments collected by the manual camera. The 
localized speed-flow model was employed to resolve the relationship between traffic volume 
and road segment speed, and further to develop a vehicle emission inventory with high 
temporal–spatial resolution for the Beijing urban area on a typical weekday. Yang et al.[22]

expanded the research domain the improved the temporal-spatial resolution compared with 
Jing’s research, employed the localized speed-flow model and resolved the congestion maps 
to established large-scale, real-world traffic datasets of the entire municipal area of Beijing 
and the emission contribution from the nonlocal freight was first estimated.

Such transportation simulation methods are often time-consuming, which has motivated 
us to explore more efficient data-driven method to map traffic flows in an entire network. 
That is to utilize machine learning methods to analyze the spatial distribution of traffic 
characteristics (e.g., volume, speed) by relating to some physical land-use features (e.g., 
population, infrastructure). Compared with traditional parametric methods (e.g., linear 
regression), machine learning methods are more attractive tools to perform supervised 
learning tasks on complex datasets by avoiding a prior rigid assumption about the nature form 
of the model. Random forests (RF) are often implemented in prediction analyses because of 
their increased accuracy and resistance to multi-collinearity and complex interaction 
problems as compared to linear regression[23, 24]. Random forest models have been widely 
used in predicting the spatial distribution of pollutant concentrations, showing better 
accuracy than traditional land-use regression models. 

The data-driven methods are primarily employed to predict the temporal and spatial 
distribution of the air pollutant concentrations by establishing the relationship between 
observed concentrations and land-use and economic variables within the research domain. 
Hoek et al.[25] reviewed 25 land-use regression studies and identified population density, land 
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use, physical geography and climate as significant predictor variables Brokamp et al.[26, 27]

compared the capability of land use models based on regression (LUR) and random forest 
(LURF) in predicting the PM2.5 concentration and its elements, and the results showed that 
LURF models were more accurate and precise than LUR models for most elements and could 
be used for more accurate exposure assessment. The LURF model performed well with an 
overall cross-validated R2 of 0.9 in the seven county area surrounding the Cincinnati, OH,
area and could facilitate high-resolution assessment of both long-term and acute PM2.5

exposures in order to quantify their associations with related health outcomes.
Artificial neural networks (ANN) could be suitable for simulating traffic profiles when 

the relationship between input and output are not clear by considering the implicit layers 
between them. Fu and Rilett[28] presented an ANN based method for estimating route travel 
times between individual locations in an urban traffic network during different time periods 
of the day peak and off-peak. The computational results showed that the ANN-based route 
travel time estimation model is appropriate, with respect to accuracy and speed, for use in 
real applications. Ghanim and Abu-Lebdeh[29] developed a real-time traffic signal control 
integrating traffic signal timing optimization using ANN and genetic algorithms (GA) 
modeling. The simulation results showed that the proposed control system can reduce transit 
vehicle delay and improve schedule adherence. The reductions in delay and schedule 
adherence are statistically significant.

Support vector machine is a pattern classifier constructed from a unique learning 
algorithm that extracts training vectors that lie closest to the class boundary. The learning 
algorithm uses these vectors to construct a decision boundary that optimally separates the 
data and widely used in the prediction of the traffic accidents. Yuan et al.[30] trained the 
simulated incident data from an arterial network in California and showed that SVMs offers 
a lower misclassification rate, higher correct detection rate, lower false alarm rate and slightly 
faster detection time in arterial incident detection. Sun et al.[31] collected the crash data and 
the corresponding traffic flow detector data on expressways in Shanghai and employed an 
SVM model to predict the likelihood of crashes based on the important and significant 
variables from the traffic flow 5-10 minutes before the crash occurred using RF. The results 
showed that the crash prediction model can obtain a satisfactory prediction performance for 
crashes with the accuracy of the crash prediction model can be as high as 78.0%.

Gaussian Processes (GPs)[32] are another machine learning method that could offer 
flexibility in finding a suitable parametric form for a complex dataset without prior 
experience. Previous research showed that GPs are easier to use in comparison to alternatives 
like neural networks and can offer some practical advantages over SVMs. Xie et al.[33]

evaluated the GPs and SVMs performance on short-term traffic flow forecasting based on 
different sets of traffic volume data collected from highways in Seattle, Washington. The 
comparative results showed that because the GPs is formulated in a full Bayesian framework, 
it could allow for explicit probabilistic interpretation of forecasting outputs and give the GPs
an advantage over SVMs to model and forecast traffic flow. Liu et al.[34] proposed dynamic 
congestion model based on GPs that can effectively characterize both the dynamics and the 
uncertainty of congestion conditions to minimize the collective travel time of all vehicles in 
the system. The model are validated in two Asian cities and showed the routing algorithm 
could generate significant faster routes and achieve near-optimal performance. GPs are 
flexible non-parametric Bayesian models that have been successfully applied to model and 
predict with state-of-the-art results various traffic related phenomena such as traffic 
congestion and traffic volumes.

The data-driven approach is both scientific and adaptable to process real-time traffic big 
data, making it an ideal tool for characterize temporal the and spatial distribution of traffic 
flows.
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3 Conclusion and perspectives

Over the past two decades, China has experienced rapid growth in vehicle population.
Emission inventories are an important tool for environmental and climate managements. We 
review the basic methodology and necessary data to development the typical vehicle emission 
inventories and their application. For top-down emission inventories based on static data,
they do not account for actual traffic activity, notably inter-city transportation, may have a 
significant bias. In some megacities, the mismatch can be more significant due to special 
municipal traffic managements, and would further underestimate traffic contribution to 
ambient pollutant concentrations. For example, city dwellers in Shanghai may choose drive 
a car issued with a license plate from nearby provinces (e.g., Jiangsu, Zhejiang) to save the 
cost of the license plate auction in Shanghai. In Beijing[9], freight companies may use trucks 
registered in other provinces as result of more stringent emission regulations and urban 
restriction policy for heavy-duty trucks in Beijing, and non-local trucks can emit more black 
carbon than their local counterparts by a multiple fold.

On the other hand, temporal and spatial patterns of air pollutant emissions from on-road 
vehicles are of increasingly substantial interest because of the associated potential public 
health impacts.[35] Intake fractions of vehicular pollutants are greatest in areas with high 
vehicle usage and population density.[36] High-resolution vehicle emission inventories for air 
pollutants will be valuable to evaluate potential health benefits from vehicle emission control 
measures in particular for traffic spots. Local emission measurement data for air pollutants 
are needed to estimate and validate emission factors.[22, 37, 38] For example, Carslaw et al.[39]

reported substantial discrepancies between average NOX emission factors estimated from a 
nationwide model in UK and from local remote sensing data in London. Spatial and temporal 
heterogeneities of road emission inventory estimates for air pollutants will be greater than 
those for CO2.

We suggest collaborative and continuous efforts in China to collect traffic data alongside 
the development of ITS facilities to improve high-resolution emission inventory technologies
(e.g., traffic demand models, data-driven methods). Different elements of ITS infrastructure 
are owned and operated by different stakeholders. For example, local floating car data (e.g., 
probe taxis) are collected by local municipal governments, while inter-city highway traffic is 
monitored by Ministry of Transport. Developing a high-resolution road emission inventory 
requires collaboration between different ITS facility operators. A long-term effort to develop 
high-resolution road emission inventories would be useful to understand long-term ambient 
pollutant concentration trends and the drivers (economic development, land use change, 
urbanization) of emission changes[15]. As illustrated here, the growing availability of data 
from advanced traffic control systems coupled with a growing ability to process these data 
using big data techniques will provide Chinese policy makers with increasingly sophisticated 
high-resolution emission inventories in the future.

This study was supported by the FAW-Volkswagen China Environmental Protection Foundation 
automobile environmental protection innovation leading plan and Laboratory of Transport Pollution 
Control and Monitoring Technology.
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