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Abstract. Modeling the movement of moisture in the soil is of great 

importance for assessing the impact of agricultural land on surface water 

bodies and, consequently, on the natural environment and humans. This is 

because huge volumes of pollutants from the fields (pesticides, mineral 

fertilizers, nitrates, and nutrients contained in them) are transferred to 

reservoirs by filtering moisture. Different methods solve all these tasks. 

The method of natural analogies is based on the analysis of graphs of 

fluctuations in groundwater level. To apply this method on irrigated lands, 

it is necessary to have a sufficiently studied irrigated area with similar 

natural, organizational and economic conditions. The successful 

application of this method, based on the fundamental theory of physical 

similarity, mainly depends on the availability of a sufficiently close 

comparison object, which is quite rare in practice. Physical modeling is 

often used to construct dams and other hydraulic structures. Previously, the 

method of electrical modeling was also widely used. It was further found 

that nonlocal boundary conditions arise in the problems of predicting soil 

moisture, modeling fluid filtration in porous media, mathematical 

modeling of laser radiation processes, and plasma physics problems, as 

well as mathematical biology. 

1 Introduction 
At present, boundary value problems for equations of mixed type have become an 

important part of the modern theory of partial differential equations. One of the main 

problems in the theory of partial differential equations is the study of mixed-type equations, 

which is of theoretical and practical interest. In 1959, I.N. Vekua pointed out the 

importance of the problem of equations of mixed type in connection with problems in the 

theory of infinitesimal bendings of surfaces. The problem of the outflow of a supersonic jet 

from a vessel with flat walls is reduced to the Tricomi problem for the Chaplygin equation 

(a degenerate equation of mixed type). There are several works by F. Tricomi, S. 

Gelderstedt, A. V. Bitsadze, M. S. Salakhitdinov, T.D. Dzhuraev and their students in 

which the main mixed boundary value problems are studied, and new correct problems are 

posed for the equations of the elliptic-hyperbolic, parabolic-hyperbolic types of the first 

kind, i.e., equations for which the degeneracy line is not a characteristic. 
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In recent years, a large number of papers have appeared devoted to the study of 

equations of composite and mixed-composite types. Correct boundary value problems for 

equations of mixed-composite type, the main part of which contains an elliptic-hyperbolic 

operator, were first formulated by A.V. Bitsadze (see [1], [2]). These problems and some of 

their generalizations have now been studied in detail. 

We note that the results of all the above works were obtained for equations of the first 

kind, and for equations of the second kind of the third order, boundary value problems have 

not been previously studied. 

Therefore, the study of boundary value problems for mixed-type equations of the 

second kind seems very relevant and little studied. We note the works [3-6].

In this paper, we study a local boundary value problem for equations of mixed 

composite type of the second kind, i.e., for an equation where the line of degeneracy is a 

characteristic. 

2 Statement of the problem 
Consider the equation 
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and the domain 
1D at 0�x limited by segments OA, AD, BD, OB of straight lines 

0,1,1,0 ���� xyxy , respectively. 

The general solution of equation (1) can be represented as [5]: 

( , ) ( , ) ( )u x y z x y x�� 	
                               (3) 

where  ),( yxz is  regular solution of equation (2) in the domain 1D , and in the domain  

2D  is a generalized solution of the class R. Denote  � �x�   in the following form: 

1
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( ) 0
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and  � �1 x�  has all the derivatives in equation (1), and the smoothness of the function is 

given by the definition of a generalized solution of the class R of equation (1). 

Dirichlet problem. Required to define a function � �yxu ,  that has the following 

properties: 

a)  � � � �;, DСyxu �
b) function � �yxu ,  is a generalized solution of equation (1) of class R in the domain 

2D ,

and in the domain
1D  is regular; 

c) the gluing condition is satisfied on the degeneracy line 

0 0
lim lim ;
x x

u u
x x�� �	

� �
� �

� �

d) �� continuous up to the transition line both on the left and on the right;

e) satisfies the boundary conditions 
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where � � � � � � � � � �xxyxx
3211

,,,, ����� are given sufficiently smooth functions and 

� � � � � � � � � � � � � � � �00,11,01,00
311121
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Note that this problem is in the case 0�m  studied in [2] and in the case 01 ��� m
considered in [1]. 

Without loss of generality, we can assume that � � � � 11,00 �� ww . Based on (3) and 

boundary conditions, the Dirichlet problem is reduced to the definition of a regular solution 

in the domain 
1
D , a generalized solution of the class R in the domain 

2D  equation (2) 

satisfying the conditions 

� � � � � � � � � �,,,
1111
xwxzyzxwxz
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232
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3 Uniqueness of solutions to the problem
We will prove the uniqueness of the problem under consideration by the method of energy 

integrals. In the domain of �� we have the equation 0�� yxx zz
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Applying Green's formula, we get the following: 
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Let us show that the second integral of the left side of the equality is equal to zero. To 

do this, we use Green's formula, and since 

.0
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by domain �� and applying Green's formula to the right side of equality, we have
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Let us divide the first integral into three parts, i.e., integrating by parts, respectively; we 

have 
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� � � � .0,0,0
1

0

�� dyyzyz x
    (6) 

Then, inequalities (5) and (6) lead to the equality 

� � � �
1
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0, 0, 0.xz y z y dy ��

Therefore, from (4), we obtain 

1

2 0,x
D

z dxdy ���

means, )(),( yyxz �� , from the boundary condition 0�
AD
z  follows 0),( �yxz in  

1
D , and from )(

1
xz

BD
���  we get 0),( �yxu in ��. Insofar as 0�

OC
z , 0�

OB
z

and from the uniqueness of the Cauchy problem in the hyperbolic domain we obtain 

0),( �yxu in
2
D , which was to be proved. 

4 Existence of a solution to the problem 
It is known that the solution of the Cauchy problem for the equation 0

2
�zL in the domain 

of
2
D  has the form 
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Because ( , )z x y  is the generalized solution of the Cauchy problem for the equation

0
2
�zL in the domain of

2
D  from the class  �� then has representation (7) and

� � � � � � � � ,0
0

2

�
��	�

y

dttTtyy "��     (9) 

and functions � �tT and  � �t$  are continuous and integrable on (0, 1), where

E3S Web of Conferences 365, 01016 (2023) https://doi.org/10.1051/e3sconf/202336501016
CONMECHYDRO - 2022

 

5



� �� � � �
� � � �.22

,
1

22
212

2

12

2 	
�

�
�

�� �

m
m

Г
Г "

"
""% "

To represent the solution of the equation 0
2
�zL  in the domain of 

2
D  satisfying the 

boundary conditions � � � � � � � �xwxzyzyz
OAADOB 11

,, ���� ��� , we use the solution 

of the first boundary value problem, i.e., 

� � � � � �

� � � �� � � � � � � � ,,1;,0,;,

,0;,,

0

1

0

11

0

   �!!!!�

   �

!

!

dyxGdyxGw

dyxGyxz

y

y

��

�

��	

	� (10)

where � � ! ,;, yxG Green's function of the first boundary value problem for the heat 

equation has the form[7-8]: 
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Equation (12) is an integral Fredholm equation of the second kind, the solvability of 

which follows from the uniqueness of the solution to the problem and is determined by the 

formula 
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The study of equation (16) shows that it is an integral Fredholm equation of the second 

kind with a weak singularity. Its unique solvability follows from the uniqueness of the 

solution to the problem. Solutions of the integral equation (16) can be written using the 

resolvent as 
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1
syR is the resolvent of equation (16). 
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The latter system has a solution, which proves the existence of a solution to the 

Dirichlet problem. 

5 Studies on the smoothness of given functions
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For (21) to take place, it is necessaryФ�was a continuous function, then from the 

representation Ф�(
) it easily follows that
11

, �� continuous. Hence from 

  ! � ! dG ),1;1,()(
1

0

�
  

function �  should look like )()1()( *2

3

 �  � �� where *� is a continuous 

function. Now from (22), we will study the function 
2

� . From the definition of integro-

differential operators of fractional order � > 0 those. From )}({)( )( xfD
dx
dxfD n

axn

n

ax
77 ���

where 1,1 ���� nnn 7 , );()( baLxf � and because 
)

4

7
;

9

16
( ���m , )5,3;4( ���" , follows that 

5514 �8��� n"  and � �� �4 5 � �� �4 5� �"""""" "�"� 2112
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� �4 5
5

2 1(4 ) 1 2

25
2 1 2as

d D s
ds

"" "� "
�� 	 �/ ,� � �/ ,. +- *. +

� �4 5
5

2 13 1 2

25

0
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( ) 2 1 2

(1 )

sd s d
dx

"" " � "   
"

�	 �/ ,
� � � �/ ,- *. +6 �. +

�
            (23) 

It can be seen that the right side of equation (23) has a weak feature. Therefore, we 

cannot immediately differentiate it. To avoid this, we will first integrate by parts and then 

differentiate. Repeating this process five times and putting the result obtained in (22), we 

choose among them the term with the largest singularity, i.e., 

� �� �4 5   "� """" dss
s

� ��	 ���
0

2112)5(

2

3 212)( . The study of this expression shows that the 

existence of the integral depends on the continuity of the function belonging to the kernel. 

To do this, we will do the following:

� �� �4 5 � �� �4 5"""""  "�  "� 2112*

2

232112

2
212212 ����� �����

Insofar as """   " 21

1

2112)]21(2[ ��� �8��� kxx where 

)21(2

)1( 21

1

"

"

�
�

�
�

k then we get 

)()( *

2

21

23

23

2
xxkx �� "

"
" �

�
�� . From (20), it can be seen that the function )()( 2

2

3
DCx �� .

Based on the above results, we will formulate the following theorem: 

Theorem If  )()( 2
2

3
DCx ��

, 11
, �� continuous functions and )(x� , )(

2
x� represent 

in the form )()1()( *2

3

xxx �� ��  and )()( *

2

21

23

23

2
xxkx �� "

"
" �

�
�� , where ,*� *

2
�

continuous functions, then the solution of the Dirichlet problem exists and is unique. 

6 Conclusions 
Thus, with the help of energy integrals, the uniqueness of the solution of the boundary 

value problem for the homogeneous equation of parabolic - hyperbolic type of the third 

order of the second kind is proved. Necessary and sufficient conditions for the existence of 

a generalized solution to the formulated problem are found. An explicit representation of 

the solution to the problem under study is obtained. The results obtained and the developed 

method makes it possible to further investigate similar boundary value problems for a 

homogeneous parabolic-hyperbolic type equation of the third order of the second kind. 
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