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Abstract. Pulmonary Tuberculosis (TB) is a primary global infectious disease. Diagnosing TB patients 

involves medical examination and chest X-ray (CXR) imaging. This CXR image creates an opportunity to 

utilize machine learning to help physicians and radiologists diagnose TB suspects. Due to the inconsistency 

of image quality, image enhancement is one of the preprocessing steps to overcome the poor quality of the 

image. This study examines the effects of several image enhancement techniques, i.e., Histogram 

Equalization (HE), Contrast Limited Adaptive Histogram Equalization (CLAHE), and Fast Fourier 

Transform (FFT). These enhanced images are input for a Convolutional Neural Network (CNN). 

InceptionV3 is a transfer learning architecture with ImageNet as the pre-trained model. The image dataset 

consists of 3,500 normal and 3,500 tuberculosis CXR images. The best performance, in terms of accuracy 

and processing time, is achieved by the CLAHE enhancement technique, increasing accuracy by 4.57% 

compared to the original images as input and a processing time of 5.6 ms faster per testing image. A deeper 

analysis shows despite FFT achieving high performance, the processing time increases by 14.4 ms compared 

to the original image processing time. This study concluded that each image enhancement needs to consider 

the characteristics of the images.  

1 Introduction 

Pulmonary Tuberculosis (TB) is an infectious 

disease caused by Mycobacterium tuberculosis, 

affecting human lung tissue. Infection occurs by 

inhaling infectious particles from close contact with 

infected individuals [1]. According to the World Health 

Organization (2022), pulmonary tuberculosis remains a 

major global infectious disease, ranking second only to 

COVID-19 during the COVID-19 pandemic. In 2021, 

an estimated 10.6 million people worldwide were 

infected, with a 3.6% increase in cases per 100,000 

population compared to 2020. The number of 

tuberculosis-related deaths also rose from 2019 to 2021, 

with an estimated 1.6 million deaths recorded by the end 

of 2021 [2].  

 Diagnosing suspected TB patients typically 

involves a medical history examination and a chest X-

ray (CXR) image. The results of the CXR image assist 

physicians in diagnosing various respiratory diseases, 

including pulmonary tuberculosis. When analyzing 

chest X-ray images, doctors focus on segmenting 

images showing infection indications. Infected lungs 

typically exhibit lesions and grayish-white shadows [3]. 

However, there are often errors in chest X-ray screening, 

which has led to utilizing machine learning techniques 

for image processing, segmentation, analysis, and 

accurate tuberculosis detection [4]. Machine learning 

with image analysis has been widely employed to assist 

physicians and radiologists in enhancing diagnostic 
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decision-making. Deep learning techniques, such as 

Convolutional Neural Networks (CNNs), have also been 

utilized because they can leverage large datasets and 

extract high-accuracy data features. CNNs have 

demonstrated good performance and can be employed 

to aid in tuberculosis diagnosis [5]. 

 This problem leads to inconsistent image data 

quality that can be influenced by various factors [6]. In 

neural networks, achieving optimal results necessitates 

good image data. This realization has led to effectively 

implementing image enhancement techniques to 

improve image quality before processing. Image 

enhancement improves image features, allowing 

computers to study dynamic feature coverage 

effectively. It also reduces noise and blurring, hindering 

model performance [7]. This study aims to explore the 

impact of image enhancement on tuberculosis detection 

using a CNN-based model and to analyze the effects of 

the enhancement on the accuracy and processing time of 

this CNN-based tuberculosis detection. 

2 Related Works 

Related research has been conducted on TB 

detection using chest X-ray image data. In [8], the author 

studied TB detection using deep machine learning, 

segmentation, and visualization. The results of this 

research compared nine CNN architectures. In [9] and 

[10], the authors of these papers also conducted studies 
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using CNN with the latest CNN architectures for TB 

screening with chest X-ray images. A study was also 

conducted on using transfer learning in tuberculosis 

prediction [11].  

 Regarding previous research on image 

enhancement, [12] demonstrated that enhancement 

techniques such as contrast-limited Adaptive Histogram 

Equalization (CLAHE) and Histogram Equalization 

(HE) significantly impact the training data in deep 

learning models, resulting in increased accuracy. In 

[13], the author conducted research on the effect of 

image enhancement methods on deep learning models 

that aimed to evaluate the impact of two methods, 

namely Unsharp Masking (UM) and High-Frequency 

Emphasis Filtering (HEF). In [14], the author employed 

various spatial and frequency techniques for image 

enhancement in COVID-19 diagnosis models. In [15], 

the author also conducted research on the utilization of 

Gray Level Co-occurrence Matrix (GLCM), Discrete 

Wavelet Transform (DWT), and Local Binary Pattern 

(LBP) algorithms. 

3 Experiments 

3.1 Dataset 

In this experiment, we use the dataset in [8] that consists 

of 3,500 normal CXR images and 3,500 tuberculosis 

CXR images gathered from several CXR image 

datasets. The original size of the images is 512 × 512 

pixels. In order to accommodate the input requirement 

of the model, these images are resized into 300 × 300 

pixels. After resizing, these images are split into 75% 

training, 15% validation, and 10% test data shown in 

Table 1. 

 
Table 1. Dataset Split 

 
Class 

Normal  Tuberculosis 

Training (75%) 2,625  2,625 

Validation (15%) 525  525 

Test (10%) 350  350 

3.2 Image Enhancement 

In this study, there are three enhancement techniques 

used, i.e., Histogram Equalization (HE), Contrast 

Limited Adaptive Histogram Equalization (CLAHE), 

and Fast Fourier Transform (FFT). HE and CLAHE are 

used as contrast enhancement, while FFT is expected to 

perform a sharpness enhancement. These enhancements 

are used in order to see whether the contrast or sharpness 

of an image will be suitable for the CNN model. The 

diagram proposed is shown in Figure 1. 

 

 
Fig. 1. Proposed Tuberculosis Detection with Image 

Enhancements 

 

a) Histogram Equalization (HE): Histogram 

Equalization (HE) is a technique used to enhance the 

contrast quality of an image by redistributing the 

intensity values [16]. The working principle of this 

technique involves transforming the pixel intensity 

distribution in the image to achieve a more uniform 

distribution.  

b) Contrast Limited Adaptive Histogram 

Equalization (CLAHE): Contrast Limited Adaptive 

Histogram Equalization (CLAHE) is an enhancement of 

the Adaptive Histogram Equalization technique to 

address excessive contrast enhancement [17]. This 

method introduces a clip limit to the histogram, 

representing the maximum height threshold of the 

histogram [18].  

c) Fast Fourier Transform (FFT): Fast Fourier 

Transform (FFT) is an algorithm used to compute the 

discrete Fourier transform (DFT) efficiently [19]. It 

works by transforming the function from the spatial 

domain to the frequency domain, and the reverse 

transformation (inverse) is used to implement changes. 

In image processing applications, FFT can be applied to 

sharpen images through high-pass filtering, as shown in 

Figure 2. The high-pass filters used include Ideal High-

Pass Filter (IHPF), Butterworth High-Pass Filter 

(BHPF), and Gaussian High-Pass Filter (GHPF). 

 

 

 
Fig. 2. Filtering in Fast Fourier Transform 

 

3.3 Convolutional Neural Network (CNN)  

Convolutional Neural Network (CNN) is a 

specialization of neural networks designed to process 

data with grid-like topologies, such as 2D-pixel grids 

found in image data [20]. This type of neural network is 

based on mathematical convolution operations. 

InceptionV3 architecture developed by Google [21] is 

utilized for this study. The usage of this specific CNN 

due to its transfer learning capability with ImageNet as 

a pre-trained model is shown in Figure 3. The input 

images for this architecture are 300 × 300 pixels and 

normalized. 
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Fig. 3. Proposed CNN for Tuberculosis Detection 

4 Results 

This study uses three types of images as CNN's input 

image, i.e., original, HE, CLAHE, and FFT-enhanced 

images. These images are fed into the CNN architecture 

with transfer learning from ImageNet as default for the 

InceptionV3 model. The performance of these images is 

measured using the model's accuracy and loss. The 

accuracy is measured using the formula as follows: 

 

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐y = 
𝑇𝑃+𝐹𝑁

𝐴𝑙𝑙 𝐷𝑎𝑡𝑎 
                (1) 

 

where TP is True Positive, and FN is False Negative.  

Regarding the hyperparameter, this study conducted 

a manual hyperparameter tuning. The tuning process 

regards the suitable hyperparameter with balanced 

accuracy, loss, and processing time per image using 

original images in milliseconds (ms). The parameter 

used for the InceptionV3 model is shown in Table 2.  

The focus of this study is to explore the effects of 

each enhancement in CNN-based pulmonary 

tuberculosis detection. In this tuned hyperparameter, the 

original image has a 94,98% training accuracy and 

94,14% testing accuracy. The processing time for each 

image in training is 69.3 ms, and testing is 74.2 ms. 

4.1 Contrast Enhancement 

In the contrast enhancement scenario, HE and 

CLAHE are performed to the images and fed into the 

CNN as input. In Figure 4, it is observed that CLAHE 

gives more clarity than HE. In CLAHE, the images are 

enhanced with clip limit 4.0 and tile grid size 16 × 16 as 

default. 

 
Table 2. Tuned Hyperparameter 

Hyperparameter Value 

Model 2 Fully Connected Layer 

(64 Units with 0.2 Dropout 

Rate) 

Learning Rate 0,0001 

Optimizers Adam 

Batch Size 32 

Epochs 15 

 

HE achieved high performance with 97.12% training 

accuracy and 96.29% testing accuracy. An increasing 

performance was also shown by CLAHE, with 98.66% 

training accuracy and 98.71% testing accuracy. This 

indicates that CLAHE-enhanced images are better for 

the CNN architecture to learn the feature of each image 

in comparison to HE-enhanced, as shown in Figure 5. 

 

  
Fig. 4. Contrast-Enhanced CXR Images 

  

  
 

Fig. 5. (a) HE Accuracy Plot (b) CLAHE Accuracy Plot 

 

Furthermore, the processing time for HE and 

CLAHE shows a consistent performance. The 

processing time for HE is 69.3 ms on training per image 

and 80 ms on testing per image. Meanwhile, CLAHE 

achieves faster processing time with 67.8 ms on training 

per image and 68.6 ms. It can be observed that CLAHE 

performs better with higher accuracy and faster 

processing time. 
 

4.2 Sharpness Enhancement 

For the sharpness enhancement, this study performs 

the Fast Fourier Transform (FFT) with three high-pass 

filters, i.e., Ideal High-Pass Filter (IHPF), Butterworth 

High-Pass Filter (BHPF), and Gaussian High-Pass Filter 

(GHPF). These filters enhance the images in the 

frequency domain, as can be seen in Figure 6. 
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Fig. 6. FFT Enhanced CXR Images 

 

 

 
Fig. 7. (a) FFT-IHPF (b) FFT-GHPF (c) FFT-BHPF 

Based on the observation of several samples of these 

enhanced CXR images in Figure 6, the enhancement 

result is generally similar across three high-pass filters 

performed. Despite this observation, the performance of 

CNN with the input of these enhanced images is 

different, as shown in Fig 5. FFT-IHPF achieves 97.24% 

training accuracy and 98.29% testing accuracy. FFT-

GHPF achieves 98,43% training accuracy and 98.14% 

testing accuracy. Meanwhile, FFT-BHPF achieves 

98.71% training accuracy and 97.86% testing accuracy. 

Based on this result, it shows that each high pass filter 

on FFT fluctuates the performance of CNN of each 

enhanced image. The accuracy plot shown in Figure 7 

also indicates how distinguished the CNN is in learning 

the features of images.  

Additionally, it is found that the processing time is 

varied for each high-pass filter. The processing time for 

FFT-IHPF is 85.3 ms on training per image and 88.6 ms 

on testing per image. FFT-GHPF uses 87.3 ms on 

training per image and 91.4 ms on testing per image. 

Lastly, FFT-BHPF uses 87.7 ms on training per image 

and 87.3 ms on testing per image. This increasing time 

is due to noise or artifacts that FFT enhancement results 

in, potentially making it harder for CNN to extract the 

feature. This result shows that FFT-IHPF enhanced 

images perform better in the CNN with higher accuracy 

and faster processing time. 
 

5 Conclusions 

This paper implements three image enhancement 

methods: HE, CLAHE, and FFT. These enhanced 

images are used as input on InceptionV3 architecture 

with transfer learning using ImageNet. The best 

performance, in terms of testing accuracy and 

processing time, is achieved using CLAHE 

enhancement. This technique increases the testing 

accuracy by 4.57% in comparison to the original images 

as input. Similar to accuracy, the processing time is also 

5.6 ms faster per testing image. The comparison of the 

performance of each enhanced image is shown in Table 

3.  

 In regards to the accuracy of FFT techniques, 

despite it showing a high accuracy result, the processing 

time is increased. The highest performance, in terms of 

testing accuracy, is shown by FFT-IHPF, with an 

increase of 4.15% in comparison to the original images 

as input. 

 
Table 3. Overall Performance 

Techniques  
Training 

Accuracy  

Training  

Time per  

Image  

(ms)  

Testing 

Accuracy  

Testing  

Time per  

Image  

(ms)  

Original  94.98%  69.3  94.14%  74.2  

HE  97.12%  69.3  96.29%  80  

CLAHE  98.66%  67.8  98.71%  68.6  

FFT-IHPF  97.24%  85.3  98.29%  88.6  

FFT-GHPF  98.43%  87.3  98.14%  91.4  

FFT-BHPF  98.71%  87.7  97.86%  87.3  

 

Despite this significant increase, the processing time 

per testing image also increased by 14.4 ms compared to 

the original testing image processing time. A deeper 

examination through three FFT techniques shows that 

despite different high-pass filters being performed, the 

results of CNN training can differ. This indicates that 

each filter generates enhanced images with other 

characteristics.  
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This study concludes that performing image 

enhancement can lead to several effects. On this CNN-

based pulmonary detection, contrast enhancement is 

superior in accuracy and processing time, with CLAHE 

being more suitable. Compared with sharpness 

enhancement, although FFT achieves a high precision, 

the processing time is increased. Further study is 

advisable to study other CNN architecture and add 

classes with a suitable enhancement. 
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publication of this research. 
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