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Abstract. Volcanic eruptions pose a significant risk to communities located near active volcanoes. Disaster 
mitigation and risk reduction efforts rely on detecting and monitoring volcanic activity as early as possible. 
This article introduces VEVCC, a MATLAB-based application designed to precisely identify and extract 
volcanic seismic events from continuous data streams. VEVCC's primary objective is to facilitate the 
creation of an Excel file containing the arrival times of detected events, which can then be used for various 
purposes, such as early warning disaster mitigation and automated event identification via machine learning 
techniques. VEVCC utilizes cross-correlation algorithms to identify volcanic seismic events. It separates 
these events from background noise and other sources of seismicity, allowing for the construction of a clean 
and informative dataset. The extracted data is a valuable resource for estimating the frequency of volcanic 
events and evaluating patterns of volcanic activity. VEVCC's time-stamped event data is indispensable for 
improving early warning systems, real-time surveillance, and automated event identification. We tested the 
program on the Merapi volcano datasets during a 1998 campaign for a broadband experiment with the 
capability to extract the events automatically. Further machine-learning models and algorithms enhance the 
automatic recognition of volcanic events.  

1 Introduction 
The significance of accurate event detection for 
volcano-tectonic events cannot be overstated. Volcano-
tectonic events are a type of seismic activity that occur 
in volcanic regions, often associated with the movement 
and interaction of volcanic material inside and outside 
the edifice. These events can have major implications 
for the safety and well-being of nearby populations, as 
they can trigger volcanic eruptions and other harmful 
phenomena. To effectively mitigate the risks associated 
with volcano-tectonic events, it is crucial to develop 
robust and reliable methods for detecting and predicting 
these events [1-2]. One widely used method for 
monitoring and detecting volcano-tectonic events is 
through the analysis of seismic signals [3]. Seismic 
signals provide important information about the 
behavior and changes in activity of a volcano. More 
specifically, volcano seismic signals can be classified 
into six classes: long-period events, volcanic tremors, 
volcano-tectonic events, explosions, hybrid events, and 
tornillo [3-4]. Seismological methods have proven to be 
among the most useful techniques for monitoring 
volcanoes and detecting volcano-tectonic events [5-7]. 
These seismic signals can occur before and during an 
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eruption, making their analysis and interpretation a 
crucial task for volcanic eruption forecasting. It is 
important to identify the event, even the number of 
events is significantly contribute to volcanic disaster 
mitigation and timely response. We apply cross-
correlation techniques to analyze the time series of 
volcano seismic signals in order to detect and categorize 
volcano-tectonic events. Cross-correlation techniques 
have shown promise in accurately identifying and 
categorizing volcano-tectonic events. Cross-correlation 
techniques have shown promise in accurately 
identifying and categorizing volcano-tectonic events 
[8]. A common signal-processing method called cross-
correlation is crucial to exploration and earthquake 
geophysics. In travel time tomography, seismic velocity 
estimation makes use of the cross-correlation between 
seismic records that were observed and those that were 
predicted [9-10]. 
 
Cross-correlation is a process for measuring the 
similarity of one time series (seismic trace) to another 
time series (seismic trace)[11]. In this case, broadband 
data from seismic recordings at station L57 were used to 
detect volcanic events from Mount Merapi. Where Lava 
57 or L57 is one of the broadband seismometer stations 
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installed on Mount Merapi. The location of L57 is in 
Boyolali Regency, specifically in the Selo District. The 
location of station L57 is as shown in Fig. 1. below. 

 
 
Fig. 1.The location of the broadband seismic station L57. 
 
This paper presents VEVCC, an application built on 
MATLAB that was developed specifically for the 
identification and extraction of volcanic seismic events 
from continuous data streams. The major objective of 
the VEVCC is to provide a dataset that is spotless and 
well-organized, and which includes the arrival times of 
all observed events. These types of data can be of 
tremendous assistance in the development of early 
warning systems, real-time surveillance, and the use of 
machine learning algorithms for the purpose of 
automating event recognition [5, 12-13]. 
 
2 Methods 
 
VEVCC identifies and extracts volcanic seismic events 
by utilizing cross-correlation techniques, as described in 
the following procedures: 

 
Initialize indeks to 0 
Initialize sta_idx to sta * 100 
Initialize lta_idx to lta * 100 
Initialize event01 to master_event 
Initialize lev to the length of event01 
 
if lev is greater than lta_idx, then 
    Set akhir_idx to lev 
else 
    Set akhir_idx to lta_idx 
end If 
 
initialize indeks to 0 
 
for i in the range from 1 to the length of data 

minus akhir_idx minus 1: 
   increment indeks by 1 
   compute cross-correlation between data and 

master_event, normalize the result 
    Set cc(indeks) to the maximum value of p 
    set the mean absolute value of sta data 

    set the mean absolute value of lta data 
 

calculate the envelope  
find the intercept points cc and treshold. s\tore 

the intercept points in (X0, Y0). 
 
Set namafile to ‘event_terpilih.xlsx’ 
 
Write the values in X0 to an Excel file named 

namafile (e.g., using writematrix with appropriate 
arguments). 
 

(1) Acquisition of Data: The VEVCC obtains its input, 
which consists of continuous seismic data, from a 
real-time monitoring or an archived data system. 

(2) Analysis of Cross-Correlation: The program makes 
use of techniques for analyzing cross-correlation in 
order to discover characteristic seismic wave 
patterns that are connected with volcanic 
occurrences. These patterns cannot be attributed to 
the background noise [8]. 

(3) Event Extraction: Seismic events that have been 
detected are timestamped and recorded in an Excel 
file, which provides a structured dataset that may be 
used for further investigation [3, 14]. 
Overall, the VEVCC processing is depicted as 

shown in the following flowchart: 
 

 
 

Fig. 2. Flowchart of VEVCC program 
 

During a broadband experiment campaign in 1998, we 
tested VEVCC using seismic data from the Merapi 
volcano [5]. The results showed that VEVCC worked as 
expected. A dataset that is acceptable for study was 
produced as a result of the program's successful 
identification and time stamping of volcanic 
occurrences (Fig.3). This dataset has the potential to be 
extremely helpful in determining the frequency and 
patterns of volcanic activity. As a result, it can make a 
contribution to early warning systems and real-time 
surveillance. 
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The cross-correlation of the two signals xp and yp can 
be represented in the following form. The similarity 
between the events xp(t) and yp(t) is quantified using the 
cross-correlation function rxy(τ)[15]: 

rxy τ    xp t  yp t  τ dτ                   (1) 

where τ is the delay between the two signals. The change 
in τ changes the relative position of the signal x relative 
to the signal y.  It should be noted that the correlation 
function 𝒓𝒓𝒓𝒓𝒓𝒓 measures only the similarity of the 
waveform of the signal, and not the amplitude of events. 
Thus, the amplitudes can vary for events with similar 
waveforms. This means that the waves moved along an 
almost identical trajectory, but were not necessarily 
created by a source with a constant force. The 
quantitative correlation parameter is the correlation 
coefficient r. The value of r is in the range of numbers 
from -1 to 1. The closer r is to 1, the stronger the direct 
relationship between the variables, the closer r is to -1 – 
the inverse. When r = 0, there is no significant 
relationship between the two variables [15-16]. 
 
3 Discussion 
 
The VEVCC application is a useful resource for 
organizations working to lessen the impact of natural 
disasters [3]. It helps with early warning and monitoring 
in real time by providing accurate data on volcanic 
occurrences, which can be monitored in real time [17]. 
In addition, this dataset is extremely helpful in the 
process of training machine learning models for 
automated event recognition, which might potentially 
improve the response time as well as the accuracy during 
times of volcanic emergency [9]. In addition to its 
application in emergency management, the VEVCC can 
also be utilized in the field of scientific investigation to 
better understand the behavior of volcanoes [5] . 

 

 
Fig. 3. An example of the cross-correlation results with the 
threshold line that crossing at the specific time window for the 
events. 

And the results of the cross-correlation master event 
(VTA) value are used to detect signals in a 10-minute 
event length for event determination with a specified 
threshold of 3.5 (Fig.3.) and then his detection process 
was obtained 2 events with cross-correlation values 
presented in Excel (Fig.4.) 
 

 
Fig. 4. Cross-correlation detection value in a 10-minute event 
length 

The cross-correlation results obtained using VEVCC 
yielded 2 detections for the master event (VTA) with 
detection values of 0.514784032 and 0.495462865. 

The scientific community has recently placed a greater 
emphasis (in recent years) on the significance of early 
warning systems and real-time surveillance in the 
context of the management of volcanic risk [10, 18, 19]. 
The accurate identification, as well as continuous 
monitoring of volcanic activity, are both essential 
components of these systems. VEVCC makes a 
contribution to this field by offering a tool for reliably 
identifying and extracting seismic events linked with 
volcanic activity. This makes it possible to take safety 
precautions and evacuation protocols in a timely 
manner, which is an important aspect of the subject. A 
common signal-processing method called cross-
correlation is crucial to exploration and earthquake 
geophysics. In travel time tomography, seismic velocity 
estimation makes use of the cross correlation between 
seismic records that were observed and those that were 
predicted [9, 20]. 

In addition to this, the usefulness of VEVCC extends 
into the field of applications that use machine learning 
[11, 21]. Researchers are able to create and train 
machine learning models to automatically recognize 
volcanic eruptions if they have access to the dataset that 
was generated by the VEVCC. Because machine 
learning models can handle massive datasets much more 
quickly than people can [12] this has the potential to 
drastically shorten the amount of time it takes for 
authorities to respond to volcanic emergencies [22]. The 
effective recognition of volcanic eruptions with the use 
of machine learning can contribute to improved hazard 
preparedness, response, and recovery efforts [13, 23]. 
 
In addition, the dataset that was produced by VEVCC 
has the potential to be an extremely helpful resource for 
scientific investigation [14]. Researchers are able to get 
insights into the frequency and patterns of volcanic 
activity by studying the data that was collected from the 
volcano [24]. This information has the potential to 
contribute to a better understanding of volcanic 
processes, which might then lead to improved models 
for predicting volcanic eruptions [25]. 
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The Volcanic Earthquake and Volcanic Component 
Catalog, or VEVCC, is a robust program that can 
recognize and extract volcanic seismic events from 
continuous data streams [2]. The data that is extracted is 
guaranteed to be accurate and reliable if the appropriate 
cross-correlation methods are used [11, 20]. This dataset 
is essential for the development of prevention strategies, 
early warning systems, and applications of machine 
learning [3, 12]. The efficiency of the algorithm is 
demonstrated by the fact that the test on the dataset from 
the Merapi volcano was successful [5]. Its skills in 
automated event recognition will be enhanced by further 
research and integration of machine learning models, 
adding to improvements in volcanic risk management 
[11, 26]. 
 
4 Conclusion 
 
There is a lot of potential in the application of VEVCC 
to the subject of volcanic risk management. It is able to 
recognize and extract volcanic events from continuous 
data streams, making it a vital tool in efforts to lessen 
the impact of volcanic eruptions on human 
communities. Additionally, it is useful in applications 
using machine learning and contributes to the 
advancement of scientific knowledge, making it a 
valuable tool overall. These tools are used to construct 
robust and responsive systems for disaster preparedness 
and response. VEVCC utilizes cross-correlation 
algorithms to identify volcanic seismic events. The 
time-stamped event data from VEVCC is crucial for 
enhancing early warning systems, real-time monitoring, 
and automated event identification, thus enabling 
further machine learning models and algorithms to 
improve the automatic recognition of volcanic events. 
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