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Abstract. Atmospheric pollution can affect human production life and physical and mental health to a great 
extent. In this paper, the hourly pollutant monitoring data from five state-controlled automatic atmospheric 
monitoring stations in Daqing City from 2017 to 2021 are collected to analyze the temporal and spatial vari-
ation patterns of CO, SO2, NO2, PM2.5, PM10, O3. And to assess the health risks of atmospheric particulate 
matter. The HYSPLIT model is applied to analyze air pollutants' transport pathways and the potential source 
areas of atmospheric particulate matter with the PSCF model. The results show that the concentrations of SO2 
and NO2 are higher in the north of Daqing and the concentrations of pollutants generally show a decreasing 
trend with time. The hazard quotient (HQ) for atmospheric particulate matter, which is slightly above the safe 
range set by the EPA, is higher in winter and spring. After principal component analysis, CO, NO2, and PM10 
are the main factors affecting PM2.5. In the summer, the main urban area's air pollution is mostly influenced 
by the southwest pollution trajectory. In other seasons, the northwest route predominantly regulates the re-
gional transfer of contaminants. The key regions that could be the sources of atmospheric particulate matter 
include North China, Inner Mongolia, Mongolia, and Russia. 

1. Introduction 

In China, especially in northeast China, the problem of at-
mospheric pollution has become increasingly prominent, 
causing severe impacts on people's daily lives and physical 
and mental health, and has become a significant livelihood 
issue. [1,2]. Daqing is the only provincial ecological city in 
Heilongjiang Province, the most extensive petrochemical 
base in China. However, there are still severe air pollution 
phenomena. To promote the planning and prevention of 
air pollution and reduce regional air pollution, this study 
takes the jurisdiction of Daqing city as the study area and 
statistically analysis the pollution characteristics of six air 
pollutants (CO, SO2, NO2, O3, PM2.5, and PM10) from 2017 
to 2021, including the spatial and temporal variation char-
acteristics of pollutants, spatial distribution characteris-
tics, analysis of the health effects of atmospheric particu-
late matter and uses the potential source Contribution 
Function (PSCF) method was used to analysis and discuss 
the potential source areas of PM2.5 and PM10. The influ-
ence of regional transport on pollutant concentrations in 
Daqing City was also analysis, aiming to provide theoret-
ical support for the prevention and control of atmospheric 
environmental pollution in Daqing City.  

2. Methods 

2.1. Research Areas and Data Sources 

The mass concentrations of pollutants from January 1, 
2017, to December 31, 2021, used in this study were ob-
tained from five air quality monitoring stations in Daqing 
City, as shown in Fig. 1: the air quality monitoring stations 
in Daqing City are Ranghulu District (RHL), Saertu Dis-
trict (SRT), Longfeng District (LF), Hongang District 
(HG) and Datong District (DT), and the hourly monitoring 
data of pollutants from the five monitoring stations from 
the real-time national urban air quality release platform of 
the China General Environmental Monitoring Station 
(https://www.mee.gov.cn/). The pollutant concentration 
data used in this study are hourly monitoring values, and 
the O3 concentration data are the eight-hour sliding aver-
age of ozone (O3-8h). The data with anomalies and miss-
ing data were also excluded and smoothed using monthly 
averages.  
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Fig. 1. The research area's location in relation to where the at-

mospheric monitoring stations are located. 

2.2. Research methods 

Health Risk Assessment. The health risk evaluation 
method for site-specific inhalation pathway pollutants 
(EPA-540-R-070-002) proposed by the US Environmental 
Protection Agency (EPA) was used to assess the non-car-
cinogenic and carcinogenic risk values of PM2.5 and PM10 
in air by using their mass concentrations as exposure. In 
this study, PM2.5 and PM10 were evaluated for non-carcino-
genic risk. 

𝐴𝐷𝐷  (1) 

𝐻𝑄  (2) 

The ADD is the average daily exposure dose of the pol-
lutant; CA is the concentration of the pollutant; IR is the 
respiratory volume; EF is the exposure frequency; ED is 
the duration of exposure; AT is the average duration of ac-
tion d, taking a value of; BW is the average body weight 
kg; RfD is the average body weight kg. HQ is the hazard 
quotient of a single pollutant, and when HQi > 1, it indi-
cates a non-carcinogenic risk. 

Principal component analysis (PCA) and Backward 
trajectory. Principal component analysis (PCA). Using 
principal component analysis to calculate atmospheric 
pollutants is to treat each atmospheric pollutant as a num-
ber of factors to be sought, establish a mathematical model 
and finally judge the matrix of coefficients of the relation-
ship. So as to obtain the characteristic values of major at-
mospheric pollutants and their variance contribution [3]. 

HYSPLIT. We simulated the 72-h backward trajecto-
ries at 500 m height in the core city of Daqing City using 
the HYSPLIT model [4]. In order to facilitate the research 
of pollutant transport pathways, trajectories were clustered 
using the stepwise cluster analysis (SCA) algorithm [5]. 
The equation of SCA is as follows: 

𝐷 ∑ 𝑑        (3) 

𝑆𝑃𝑉𝐴𝑅 ∑ ∑ 𝑑  (4) 
𝑇𝑆𝑉 ∑𝑆𝑃𝑉𝐴𝑅 (5) 

D is the distance between any two trajectories; j is the 
number of the route point; t is the airflow movement time; 
i is the serial number of the backward trajectory; x is the 
number of trajectories in the cluster; dj is the distance be-
tween the j route point of two trajectories; dij denotes the j 
route point in the i backward trajectory to the mean SPVAR 
is the spatial variance of each group of trajectories; TSV is 

the sum of the spatial variance of each group of trajecto-
ries. SPVAR is the spatial variance of each group of trajec-
tories. [6]. 

Potential source contribution function (PSCF) analy-
sis. The PSCF potential source contribution analysis 
method was used to identify the pollution source areas. A 
weighting factor Wij is added to increase the accuracy of 
PSCFij, and the method is called the weight potential 
source contribution function WPSCF [7]. Grid-based seg-
mentation first, setting the grid (i, j) resolution to 1° × 1°, 
and the following equation for the PSCF [8,9]. 

𝑃𝑆𝐶𝐹 𝑚 𝑛  (6) 

 (7) 
Multiply PSCFij with Wij to get the weighted post-

WPSCF value of the grid level. The larger the deal, the 
greater the influence of the grid on the pollutant concen-
tration at the receiving point [10]. 

3. Results and Discussion 

3.1. Analysis of the spatial and temporal distri-
bution characteristics of atmospheric pol-
lutants  

Differences in the spatial distribution of pollutant con-
centrations. The spatial distribution characteristics of the 
mass concentrations of six air pollutants in Daqing City 
from 2017 to 2021 were shown in this paper using kriging 
interpolation. The results are shown in Fig.2. With the de-
velopment of time, the air pollutants generally show a de-
creasing trend. The concentrations showed a decreasing 
trend with time. There may be several causes for this pat-
tern in these contaminants' temporal and geographical var-
iations, including firstly, the dominant wind direction in 
the city of Daqing is northwest, so the northwest direction 
is the upwind direction, and contaminants from this direc-
tion will be blown in the downward direction, causing the 
accumulation of pollutant concentrations in the southeast 
order, resulting in a generally greater concentration of pol-
lutants in the northeast direction than in the southwest di-
rection. Secondly, Daqing is a city of oil resources. It has 
abundant natural gas resources, so there are more gas ve-
hicles on the road, which makes the particulate pollution 
from traffic within the central city much lower [11].  

 
Fig. 2. Six contaminants' spatial distribution of yearly average 

concentrations from 2017 to 2021. 
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Monthly variation of pollutant concentrations. Fig. 
3 displays the changes in pollutant monthly average con-
centrations between 2017 and 2021. In terms of monthly 
medium concentration changes, the monthly variation pat-
tern of O3 is different, with O3 concentrations in a gradual 
increase in the first half of the year and a steady decrease 
in the second half of the year, with the highest concentra-
tion in June and the lowest in December, reflecting the 
changes in summer concentrations This may be due to the 
high summer temperatures and stronger solar UV radia-
tion. The concentration of O3 is also relatively low, and the 
rise in NO2 emissions from heating and transportation in 
winter, as well as the regular occurrence of inversions, 
causes the NO2 concentration to be greater in winter. 

The remaining contaminants are most prevalent from 
January through April. The high concentrations of partic-
ulate matter, SO2, and other contaminants in January-
March are mainly caused by coal-fired heating, vehicle 
emissions, and meteorological factors [12].  

 
Fig. 3. Six contaminants' monthly concentrations in Daqing 

City, 2017–2021. 

3.2. Health risk assessment analysis 

PM2.5 and PM10 non-carcinogenic risk hazard quotients 
(HQ) are shown in Fig. 4, with HQ values of 0.326~1.645 

for PM2.5; 0.576~1.966 for PM10, the highest in winter, fol-
lowed by spring, and lower in summer and autumn, with 
some months exceeding the EPA's safety range of less than 
1, indicating a potential non-carcinogenic risk level for at-
mospheric particulate matter in Daqing The Health Effects 
Institute study suggests that each 10 μ g m-3 increase in 
PM10 concentration will cause a 0.6 % increase in daily 
non-accidental mortality (confidence interval [IC] of 
95 %). This effect estimate is similar to or greater than the 
results of multi-city studies in the USA and Europe [13]. 

 
Fig. 4. Trends in HQ values of PM2.5 and PM10. 

3.3. Principal component analysis of influenc-
ing factors 

The principal component analysis of the key air pollutants 
and meteorological circumstances was carried out using 
SPSS software to identify the main influencing elements 
of PM2.5 engagement. The influencing factors are temper-
ature, air pressure, wind speed, PM10, SO2, CO, O3, and 
NO2. Since KMO=0.614>0.5 and Bartlett's test approxi-
mate chi-square value is 3327.497, corresponding to a 
probability value of P<0.01, the conditions of principal 
component analysis are met [14]. 

The total variance table of the original variables is 
shown in Table 1. 

Table 1. The total variance of the original variables 

Ingre-
dients 

Initial Eigenvalue 
Extraction of the sum of squares of 

loads Sum of squared rotating loads 

Total 
Percentage 
of variance 

Cumula-
tive % Total 

Percentage of 
variance 

Cumula-
tive % Total 

Percentage of 
variance 

Cumula-
tive % 

1 2.317 28.964 28.964 2.317 28.964 28.964 1.937 24.215 24.215 
2 1.493 18.664 47.628 1.493 18.664 47.628 1.634 20.423 44.638 
3 1.035 12.939 60.567 1.035 12.939 60.567 1.274 15.929 60.567 
4 0.945 11.808 72.375       
5 0.825 10.308 82.683       

The first three components, which have eigenvalues 
more prominent than 1, and the cumulative contribution 
rate, which reaches 60.567 %, may individually convey 
60.567 % of the properties of the original data, as can be 
seen from the table above. The first three principal com-
ponents can be used to represent all variables, which 
avoids the influence of correlation among independent 
variables and reduces the dimensionality of the original 
data, which is beneficial to the study of the original data.  
Table 2. The rotated component matrix of principal component 

analysis 

 
Ingredients 

1 2 3 
Zscore(T) -0.054 0.408 -0.656 
Zscore(P) 0.089 -0.474 0.099 

Zscore(WS) -0.067 0.651 0.192 
Zscore(PM10 ) 0.771 0.241 0.200 
Zscore(SO2 ) 0.167 0.104 0.823 

Zscore(NO2 ) 0.706 -0.419 0.191 
Zscore(O3 ) 0.081 0.747 -0.204 
Zscore(CO) 0.892 -0.127 -0.036 
Table 2 show that the rotation method is the maximum 

variance method. The factor loading matrix before and af-
ter rotation, it can be seen that the rotated data are more 
polarized towards 0 and 1, and the relationship between 
the common factors and the original variables is more 
straightforward, so the rotated matrix is interpreted as fol-
lows.  

The first principal component, F1: is closely related to 
NO2, CO, and PM10.  

The second principal component, F2: is closely related 
to wind speed and O3.  

The third principal component, F3: is closely related to 
SO2 and temperature. 
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Using SPSS, the main components F1, F2, and F3 and 
multiple linear regression models of PM2.5 concentration 
were performed. The coefficients of each central element 
in the model are shown the Sig. values were all less than 
0.01, so the regression equation was highly significant.  

Bringing the principal component expression obtained 
in the previous section into the above equation yields: 

C=0.004C1+0.009C2+0.007C3+0.313C4+0.066C5+0
.254C6+0.072C7+0.343C8-93.135 

The average temperature, barometric pressure, wind 
speed, PM10, SO2, NO2, O3, and CO statistics are given in 
the range C1–C8, where C is the concentration of PM2.5. 

The model incorporates weather data, air pollution lev-
els, and other variables. It then uses principal component 
analysis to identify the variables affecting the concentra-
tion of PM2.5. The findings indicate that the most important 
variables influencing PM2.5 concentration levels are CO, 
NO2, and PM10. Therefore, reducing the pollution gases 
should be the central focus of efforts to reduce PM2.5 con-
centration. 

3.4. Cluster analysis 

Backward trajectory clustering analysis. The SET mon-
itoring stations in the center of the central city were simu-
lated using the HYSPLIT model to simulate the 72-hour 
backward trajectories of atmospheric particulate matter for 
24 hours per day for the entire year 2021 to cluster them 
according to differences between trajectories and to ana-
lyze the transport paths of particulate matter in different 
regions [15]. 

Analysis demonstrates that the spring, fall, and winter 
seasons have the largest concentrations of northwest-
pointing trajectories. Each trajectory's mass concentration 
of particle matter is attributed to it. The pollution situation 
is more difficult in spring and winter than in summer and 
fall. PM2.5 mass concentration is 25.31~32.80 μg m-3 in the 
spring. The pollutant mass concentration of PM10 is 
38.49~124.32 μg m-3, in which the number of trajectories 
of cluster 4 has the highest proportion and is the main way 
of airborne particulate pollution transmission in spring; the 
pollution mass concentration of PM2.5 in winter is 
24.16~55.46 μg m-3, and the pollutant mass concentration 
of PM10 is 44.28~112.14 μg m-3, of which the trajectory of 
cluster 1 has the highest proportion of the number of tra-
jectories, which is the main pathway of airborne particu-
late pollution transmission in winter. The pollution of tra-
jectories in summer and autumn is generally reasonable. 

 

 
Fig. 5. In 2021, Daqing City's backward trajectory distribution was clustered by season. 

 
Potential source area analysis (PSCF). The back-

ward trajectory analysis can only determine the transport 
path of pollutants and cannot determine the location and 
extent of pollution sources. Therefore, the likely source re-
gions of particulate matter are examined and discussed 
better to assess the atmospheric particulate matter pollu-
tion in Daqing city. For PM2.5 and PM10, the PSCF estab-
lishes concentration thresholds of 150 and 75 μg m-3, re-
spectively. Since the concentration of PM10 is generally 
low in the autumn and summer seasons and there is no pol-
luted airflow after screening by the threshold of 150 μg m-

3, the pollution threshold of PM10 is defined as 70 μg m-3 
[16]. The distribution of WPSCF values for PM2.5 and PM10 
in Daqing city by season is depicted in Figure 6,7. Overall, 
North China, Mongolia, Jilin, Liaoning, and Anhui Prov-
inces make up the majority of the possible sources of pol-
lutants in Daqing City. 

The areas with high WPSCF values of PM10 in winter 
and spring are significantly reduced compared with PM2.5 
and are concentrated in Liaoning Province, Anhui Prov-
ince, Mongolia, and North China. In addition, there are 
also small distributions in the territory of Russia and other 
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places, which shows that a lot of PM2.5 is released from 
winter heating; PM10 in autumn and summer has a larger 
WPSCF value in Inner Mongolia, Liaoning Province, 

Mongolia, North China, and Russia after the pollution 
threshold adjustment. 

 

 
Fig.6. Characteristics of the seasonal distribution of PM2.5 WPSCF values in Daqing City in 2021. 

 

 
Fig.7. Characteristics of the seasonal distribution of PM10 WPSCF values in Daqing City in 2021. 

4.CONCLUSIONS 

(1) The research region was examined using the Kriging 
interpolation technique. The investigation demonstrates 
that SO2 and NO2, which are affected by plant cover and 
chemical reaction processes, are more significant in the 
central urban area and lower in the suburban region. The 
opposite is true for O3. The other pollutants are higher in 
the south and lower in the north because the dominant 
wind direction in Daqing is northwest, and the concentra-
tion of pollutants will accumulate downwind. 

(2) The monthly changes of ozone are analyzed in 
terms of monthly changes: The concentration of O3 con-
tinuously drops in the second half of the year and gradu-
ally rises in the first, which may be related to the greater 
UV radiation in the summer, which is beneficial for the 
production of O3. Since NO2 and O3 can be transformed 
into each other, the changes of NO2 and O3 have roughly 
opposite trends.  

(3) The hazard quotient (HQ) for atmospheric particu-
late matter, which is slightly above the safe range set by 
the EPA, is higher in winter and spring, and the potential 
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non-carcinogenic risk is higher and should be taken seri-
ously. 

(4) According to the PM2.5 principal component analy-
sis, three components have eigenvalues larger than 1, and 
their combined contribution is 60.567 %. Therefore, it is 
still required to manage the polluting gas to control the 
particulate matter pollution since regression study has 
shown that CO, NO2, and PM10 are the most important var-
iables impacting the concentration value of PM2.5. 

(5) The HYSPLIT model's backward trajectory simu-
lation analysis of the research region reveals that the north-
west direction primarily affects spring, fall, and winter 
whereas the southeast direction primarily affects summer. 
It can be seen that the pollution problem is worse in the 
spring and winter, and that the main routes for regional 
pollution transmission in Daqing City are the northwest 
trajectory through Russia, Mongolia, and Inner Mongolia, 
and the southwest trajectory through North China and Jilin 
Province. 

(6) The potential particle source areas were investi-
gated using the PSCF model. A broad range of sources 
may contribute to particulate matter throughout the winter 
and spring. The possible source region of particulate mat-
ter in the summer and fall has low WPSCF values. After 
adjusting the threshold value of PM10, it can be found that 
the possible source area in summer is striped and covers a 
small space, mainly in Inner Mongolia, Mongolia, and 
Russia. The potential source area in autumn covers a larger 
area, mainly in Inner Mongolia, Mongolia, and North 
China. 
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