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Abstract: Lake water level changes show randomness and the complexity of basin hydrological simulation 
and lake water level response. We constructed a vine copula model to simulate and predict lake water level 
that incorporated rolling decisions and real-time correction of prediction results. The model was applied to 
predict the long- and short-term water levels in Erhai Lake on the Yun-gui Plateau, southwest China. The 
results showed that (1) the predicted daily water levels (with ME=0.02~0.09, RMSE=0.02~0.024, NSE=0.99, 
and IA=0.99) were more accurate than the predicted monthly water levels (with the ME=0.039~0.444, 
RMSE=0.194~0.279, NSE=0.913~0.958, and IA=0.977~0.989), and the accuracy of the predictions improved 
as the number of variables increased. (2) The vine copula model outperformed the back-propagation neural 
network and support vector regression models, and, of the three model types, gave the best estimate of the 
nonlinear relationships between the predicted water level and climatic factors, especially in the wet season 
(May to October). (3) The prediction accuracy of the vine copula model was lower for small sample sizes and 
when there was a lack of runoff data. By improving the analysis of the model’s errors, the percentages of the 
relative errors of the prediction accuracy less than 5%, 10%, 15%, and 20% increased to 70%, 83%, 95%, and 
98%, respectively. 

1. Introduction 

Global climate change can drive increases in lake water 
temperature, decreases in the length of the ice cover period, 
expansion of lake areas, and increases in evaporation from 
lake surfaces [1,2]. Water level is the most important fac-
tor in lake management, as its fluctuations indicate 
changes in the volume of water in the basin, and determine 
the carrying capacity and self-regulation thresholds of the 
water resource system. Water level fluctuations also influ-
ence a lake’s eco-environmental characteristics, such as 
the water quality, sediment, and aquatic life. Accurate sim-
ulations and predictions of lake water levels are therefore 
important for supporting artificial regulation, operation, 
and remediation of lakes, and for supporting decisions 
about the timing of the implementation of lake functions. 
The development of high-performance computers, modern 
intelligent algorithms, and air-space-ground stereoscopic 
monitoring technology has allowed researchers to simu-
late and predict lake water levels [3–5]. To date, three ap-
proaches have been used to predict lake water levels, 
namely physically based models, data-driven and artificial 
intelligence models, and optical remote-sensing monitor-
ing [6–36]. 

Physically based models combine a generalized model 
of the hydrological water resources, hydrodynamic forces, 
hydrothermal conditions, and other elements in a lake ba-
sin; data about the climate patterns, ocean circulation, and 
geology of the environment, and supporting algorithmic 
models, such as the copula model and the support vector 
regression (SVR) model. While physically based models 
produce highly accurate simulations and predictions, they 
require detailed data of variables such as lake topography, 
hydrometeorology, socioeconomics, and the model pa-
rameters, which can be difficult to acquire. Furthermore, 
these models must be able to describe the complexities of 
the natural and social aspects of the water cycle by finely 
simulating the water resources supply, usage, consump-
tion, drainage, and the change from precipitation to runoff, 
meaning that they demand substantial computing time. 
The complexity of physically based models, their data re-
quirements, and computing demands, therefore, tend to 
limit their wide application [37]. Data-driven models, also 
known as artificial intelligence and optimization computa-
tional models, are based on the relationships between 
long-term synchronous observation data of lake water lev-
els and the drivers of change, namely the hydro-meteoro-
logical factors. Using the autocorrelation characteristics of 
a lake’s long-term water level data, one or more hydro-
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meteorological factors that are closely related to the water 
level changes are overlain to build a model that simulates 
and predicts the water levels. Data-driven models mainly 
include linear regression models [18, 29], adaptive-net-
work based fuzzy inference systems (ANFIS) [38], artifi-
cial neural network (ANN) models [39], SVR models [31], 
and wavelet analysis [40], with each having its limitations. 
Hossein et al. [19] used two hydraulically conventional 
models (WBE and MRM), two linear models (ARX and 
BJ), and two nonlinear intelligent models (MLP neural 
network and LLNF) to simulate and predict the water lev-
els in Urmia Lake, and found that the nonlinear intelligent 
models outperformed the other models. Meral et al. [41] 
predicted the monthly water levels in Beysehir Lake with 
five methods, PSO-ANN, SVR, MLP, RBNN, and found 
that the SVR model had the highest prediction accuracy. 
Elsewhere, statistical machine learning and ARIMA mod-
els were combined to predict water levels in the Red River 
Delta over different time periods [20]. The third method is 
based on optical remote sensing and uses high-definition 
cameras or radars mounted on various flight platforms, 
such as aerospace satellites, spacecraft, and unmanned aer-
ial vehicles. The information collected from the cameras 
or radars is verified with in-situ observations, and air-
space-ground integrated systems may be used to support 
large-scale, long-term continuous monitoring of lake wa-
ter levels [33–36]. 

Changes in lake water level are the combined result of 
many natural and social factors, such as precipitation, 
evaporation, runoff, temperature, wind speed, water re-
source development and utilization, and lake management 
regimes in a watershed [14]. The relationships between 
these factors are complex and nonlinear, with the result 
that it is difficult to predict how the water level will re-
spond to changes in hydro-meteorological variables using 
simple statistical models. In recent years, copula functions 
have been increasingly used in multivariate statistics and 
stochastic simulations, because of their ability to describe 
the interdependence of variables. Copula functions have 
been used extensively in hydrology and water resources 
research for analyzing flood frequency, identifying 
drought return periods, geostatistical interpolation, simu-
lating precipitation, simulating runoff from multiple loca-
tions, and predicting droughts [42–48]. Most studies so far 
have used two- or three-dimensional copulas as high-di-
mensional copulas do not provide accurate simulations of 
the correlation between high-dimensional variables [49]. 
Vine copulas, however, are known for their ability to de-
compose high-dimensional joint distributions into a hier-
archical structure of binary connections, and are more 
flexible than multivariate copulas for constructing com-
plex dependency structures between variables. While vine 
copulas have been used successfully to predict droughts 
and simulate flood characteristics, precipitation, and run-
off [50–55], they have rarely been used to simulate and 
predict lake water levels over the long-term time-series. 

The objective of this study was to capture the depend-
ence between the lake water level and hydro-meteorologi-
cal variables, and explore the possibility of using a vine 
copula model for predicting the long-term water level. To 
achieve this objective, a multidimensional variable vine 
copula model was constructed and the monthly and daily 

water levels were predicted from different combinations 
of the hydro-meteorological factors. The accuracy of the 
predictions from the constructed vine copula model was 
tested by comparing the simulation results with those from 
a BP neural network model and a support vector regression 
(SVR) model. A vine copula model for lake management 
was established to predict the lake water level for small 
data sets. The accuracy of the model was tested and im-
proved by error analysis, such that the obtained lake water 
level values were further refined. The vine copula model 
produced in this study will provide information to support 
decisions about lake water level regulation, protect the 
aquatic ecological environment, manage the water re-
sources, and plan the allocation of water resources in a ba-
sin.  

2. Materials and Methods 

2.1. Study area and data 

Erhai Lake, in the Dali Bai Autonomous Prefecture of 
Yunnan Province, is the seventh largest freshwater lake in 
China and the second largest freshwater lake on the Yun-
gui Plateau . It is at the heart of the Cangshan Mountain-
Erhai Lake National Nature Reserve [56]. This lake per-
forms seven major functions, namely municipal water sup-
ply, irrigation, hydropower generation, climate regulation, 
fishery, shipping, and tourism. The Erhai Lake area en-
countered continuous drought disasters from 2010 to 2015 
because of global climate change and high-intensity hu-
man activities. For example, the agricultural water use and 
sources of agricultural non-point pollutants in the basin in-
creased, causing a decline in the lake water level, and trig-
gering local cyanobacterial bloom outbreaks. Because of 
the lake’s value as a multi-purpose resource, the protection 
and management of the Erhai Lake Basin aquatic ecosys-
tem has attracted national attention. 

The study was supported by data of the (1) mean 
monthly (or daily) water level (1954–2021), obtained from 
the Daguanyi Station in Erhai Lake Basin; (2) monthly (or 
daily) precipitation, mean temperature, and evaporation 
data (1954–2021) retrieved from Dali Meteorological Sta-
tion; (3) monthly runoff for the Erhai Lake Basin (1954–
2016) that was calculated from measured water level data 
from the Daguanyi Station at Erhai Lake, outflow rate data 
from the Tianshengqiao Hydrologic Station on the Xi’er 
River downstream and the tunnel of Trans- basin water 
supply engineering from Erhai Lake to Binchuan, and ob-
served evaporation data from Dali Meteorological Sta-tion, 
and data for industrial and agricultural water use in the Er-
hai Lake Basin. We al-so used data from (4) the Water Re-
sources Bulletins and Water Conservancy Censuses of the 
Yunnan Province. 

2.2. Methods 

The aim of the study was to predict the lake water level 
under a range of scenarios with different combinations of 
hydro-meteorological variables, with evaporation (E), 
temperature (T), precipitation (P), and the runoff flowrate 
(F) as the hydro-meteorological variables. Because there 
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is significant autocorrelation in the lake water level series 
over time, the water level state for an earlier time period 
was used as an input variable to the model. When the pre-
diction process involved the previous water level, the wa-
ter level measured at the end of the previous time period 
was used to correct the water level predicted at the begin-
ning of the time period. Then, the measured water level of 
the previous period was used as an input when predicting 
the level of the next time period. This approach, of com-
bining rolling decisions with real-time corrections, helped 
prevent the accumulation of model errors in the prediction 
process [57]. The idea behind the model was to select dif-
ferent combinations of conditional variables, use the most 
suitable vine copula to connect the function between the 
water level and the hydro-meteorological variables, simu-
late the predicted water level through the quantile condi-
tional form of the function, and then select the optimal pre-
diction model. 

Lake water level changes are the result of the interac-
tions of multiple factors that change continuously. The re-
lationships between the factors that affect the lake water 
level are variable. Various vine copula structures have 
been used to deal with the complex relationships between 
variables. In this study, two vine copula structures were 
selected and compared, namely the C-vine and the D-vine 
copula functions. The C-vine is a star-like structure that 
describes a situation where one variable dominates the re-
maining variables, and the D-vine is a parallel line struc-
ture that describes a situation when the dependencies of 
the variables are almost the same [58]. The C-vine copula 
and D-vine copula structures are displayed using five var-
iables, namely, the water level of the current time period 
(Z), water level of the previous time period (Zt-1), evapo-
ration (E), temperature (T), and the runoff flowrate (F) 
(Fig. 1). 

 
Figure 1. Five-dimensional variable structure of the vine copula 

For example, when the five variables shown in Fig. 1 
are arranged in different orders, the combined probability 
density function of the C- and D-vine copulas can be de-
composed into: 
𝑓ሺ𝑇, 𝑍, 𝐹, 𝐸, 𝑍௧ିଵሻ ൌ 𝑓ሺ𝑇ሻ ∙ 𝑓ሺ𝑍ሻ ∙ 𝑓ሺ𝐹ሻ ∙ 𝑓ሺ𝐸ሻ ∙
𝑓ሺ𝑍௧ିଵሻ ∙ 𝑐்௓ ∙ 𝑐்ி ∙ 𝑐்ா ∙ 𝑐்௓௧ିଵ ∙ 𝑐௓௧ିଵ,௓|் ∙ 𝑐௓௧ିଵ,ி|் ∙
𝑐௓௧ିଵ,ா|் ∙ 𝑐ா,௓|௓௧ିଵ,் ∙ 𝑐ா,ி|௓௧ିଵ,் ∙ 𝑐௓,ி|ா,௓௧ିଵ,்      (1) 
𝑓ሺ𝐸, 𝐹, 𝑍௧ିଵ, 𝑇, 𝑍ሻ ൌ 𝑓ሺ𝐸ሻ ∙ 𝑓ሺ𝐹ሻ ∙ 𝑓ሺ𝑍௧ିଵሻ ∙ 𝑓ሺ𝑇ሻ ∙
𝑓ሺ𝑍ሻ ∙ 𝑐ாி ∙ 𝑐ி௓௧ିଵ ∙ 𝑐௓௧ିଵ் ∙ 𝑐்௓ ∙ 𝑐ா,௓௧ିଵ|ி ∙ 𝑐ி,்|௓௧ିଵ ∙
𝑐௓௧ିଵ,௓|் ∙ 𝑐ா,ி|்,௓௧ିଵ ∙ 𝑐்,௓|௓௧ିଵ,ி ∙ 𝑐ா,௓|்,௓௧ିଵ,ி      (2) 
where ƒ(Χ) is the edge density function; с is the density 
function of the two-dimensional copula in the vine struc-
ture, and с•|• is a conditional distribution function. With a 
three-dimensional variable as an example, ƒ(Z|Zt-1,E) can 
be expressed by equation (3) when the h function is intro-
duced into the conditional distribution function: 

𝑓ሺ𝑍|𝑍௧ିଵ𝐸ሻ ൌ
డ஼ೋ,ೋ೟షభ|ಶൣ௙൫𝑍ห𝑍௧ିଵ൯,ீ൫𝐸ห𝑍௧ିଵ൯൧

డ௙ሺா|௓೟షభሻ
ൌ

ℎ൛ℎሺ𝑢௓|𝑢௓௧ିଵ; 𝜃௓௧ିଵ,ாሻหℎ൫𝑢ாห𝑢௓௧ିଵ; 𝜃௓௧ିଵ,௓௧ିଵ൯; 𝜃ா,௓௧ିଵൟ   
(3) 

where θ is the parameter of the copula function when there 
is a joint distribution between two variables, and u repre-
sents the edge cumulative distribution function of the var-
iable, which represents the conditional distribution func-
tion of water level (Z) given the conditional variable water 
level of the previous time period (Zt-1) and evaporation (E). 
The quantile transformation is then carried out to derive 
the inverse function to predict the water level(Z), which 
can be expressed as: 

𝑍 ൌ 𝐹ିଵሺ𝑢௓ሻ ൌ
𝐹ିଵൣℎିଵ൛ℎିଵሺ𝛤หℎ൫𝑢ாห𝑢௓௧ିଵ;𝜃௓௧ିଵ,௓௧ିଵ൯; 𝜃ா,௓௧ିଵሻ|𝑢௓௧ିଵ; 𝜃௓௧ିଵ,ாൟ൧ (4) 

where F-1 is the inverse of uz; and h-1 is the inverse of the 
h function, and Г is the probability. 

Building a vine copula model for simulating and pre-
dicting water levels involved the following steps: 

1) The marginal distribution for the variable was fitted. 
2) Different conditional variable combination scenar-

ios were selected to construct three-, four-, five-, and six-
dimensional C- and D-vine copula joint distributions. Af-
ter the vine copula model was completed, the appropriate 
vine copula model was selected for the different combina-
tions of conditional variables. 

3) The distribution of the conditions was constructed, 
to account for the long-term impact of meteorological fac-
tors and water level in the early stage. 

4) Vine copula sampling has inherent uncertainty. The 
sampling algorithms were improved and used to sample 
from the conditional C- or D-vines (see [59]). To obtain 
better predictions, 1000 samplings were carried out in the 
conditional C- and D-vines. Using Equation (4), the aver-
age of the 1000 predicted water level values was calcu-
lated as the final predicted water level value. 

5) The above procedures were repeated until all the 
conditional variable combina-tions were processed. The 
vine copula model was then evaluated for each combina-
tion of the conditional variables to select the optimal con-
ditional variable combination. The technical framework is 
presented in Fig. 2. 
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Figure 2. Framework for predicting the lake water level based on the vine copula 

2.3. Model error evaluation 

The vine copula simulation method was compared with 
two other models, a BPNN and an SVR, to evaluate the 
accuracy of the forecasted lake water levels. The model’s 
ability to predict the water level of Erhai Lake was evalu-
ated using four common statistical indices of error, namely, 
the mean error (ME), root mean square error (RMSE), in-
dex of agreement (IA), and Nash-Sutcliffe efficiency co-
efficient (NSE), that were calculated with formulae (5)–
(8). The IA values are between 0–1, and the model perfor-
mance improves as the IA value increases. The NSE val-
ues range from –∞ to 1; an NSE value close to 1 indicates 
that the simulated value is close to the observed value, 
whereas an NSE value close to 0 indicates that the simu-
lated result is close to the mean level of the observed value, 
that is, the overall result is reliable, but there are large er-
rors in the process simulation range [11]. 

𝑀𝐸 ൌ ∑ ௌ೔ିை೔
௡

௡
௜ୀଵ                 (5) 

𝑅𝑀𝑆𝐸 ൌ ට∑ ሺௌ೔ିை೔ሻమ
೙
೔సభ

௡
           (6) 

𝐼𝐴 ൌ 1 െ
∑ ሺௌ೔ିை೔ሻ

మ೙
೔సభ

∑ ሺ|ௌ೔
೙
೔సభ ିைത|ା|ை೔ିைത|ሻమ

        (7) 

𝑁𝑆𝐸 ൌ 1 െ
∑ ሺௌ೔ିை೔ሻ
೙
೔సభ

మ

∑ ሺை೔ିைതሻమ
೙
೔సభ

           (8) 

where n is the number of months/days, Si is the predicted 
water level, Oi is the actual observed water level, and  

is the mean of the actual observed water level. 

3. Results and Analysis 

3.1. Building vine copula models to simulated 
long-term changes in the Erhai Lake water leve 

The P-III distribution was selected for the monthly runoff 
flowrate (F), and distributions typically used for hydrolog-
ical variables (Normal, Gamma, Lognormal, and Weibull) 
were selected to construct the marginal distribution func-
tion of the other variables. The Weibull distribution was 
selected for the water level (Z), mean water level of the 
previous month (Zt-1), monthly precipitation (P), and the 
mean monthly temperature (T), and the lognormal distri-
bution was selected for monthly evaporation (E) (Table 1). 
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Table 1. Goodness-of-fit test of the univariate marginal distribution functions 

Distribution 

function 

Test 

parameters 
Z Zt-1 P T E 

Normal 

distribution 

P 0.1072 0.1065 0.158 0.127 0.107 

AIC 2071.852 2073.708 8687.608 4359.168 7437.763 

BIC 2081.108 2082.964 8696.808 4368.424 7447.019 

Gamma 

distribution 

P 0.1073 0.1066 0.101 0.146 0.065 

AIC 2071.995 2073.851 8094.378 4414.317 7338.605 

BIC 2081.251 2083.107 8103.578 4423.573 7347.861 

Lognormal 

distribution 

P 0.1073 0.1067 0.212 0.158 0.051 

AIC 2072.067 2073.922 9453.176 4480.846 7314.036 

BIC 2081.323 2083.179 9462.376 4490.102 7323.292 

Weibull 

distribution 

P 0.046 0.046 0.072 0.123 0.104 

AIC 2013.296 2015.317 8055.417 4319.576 7447.411 

BIC 2022.552 2024.574 8064.616 4328.832 7456.667 

Three-, four-, five-, and six-dimensional vine copula 
models were built with dif-ferent combinations of water 
level (Z) and the other five variables (abbreviated as 
VC(x1, ......, xn), n=3, 4, 5, 6). The three-dimensional C-
vine copula and the D-vine copula had the same goodness-
of-fit (Table 2), but the error analysis of the fitting results 
showed that the C-vine copula model should be selected. 
The C-vine copula model was also chosen for the 
VC(Z,Zt-1,E,P) four-dimensional vine copula models, 
VC(Z,Zt-1,E,T,F) five-dimensional vine copula models, 

and the VC(Z,Zt-1,E,T,P,F) six-dimensional vine copula 
model, and the D-vine copula model was chosen for other 
models. The C-vine copula was there-fore chosen for most 
of the different variable combinations used to predict the 
monthly water levels in Erhai Lake. This analysis indicates 
that the correlations between the hydro-meteorological 
variables and the water level were variable. The C-Vine 
copula model had a better ability to capture the dependent 
structures between the hydro-meteorological variables and 
the water level. 

Table 2. Goodness-of-fit testing of the Multi- dimension vine copula models 

Simulated Model 
C-vine copula function D-vine copula function 

logLik AIC BIC logLik AIC BIC 

VC(Z,Zt-1,P) 1112.87 -2217.74 -2199.23 1112.87 -2217.74 -2199.23 
VC(Z,Zt-1,T) 992.62 -1977.23 -1958.72 992.62 -1977.23 -1958.72 
VC(Z,Zt-1,F) 1026.63 -2043.27 -2020.13 1026.63 -2043.27 -2020.13 
VC(Z,Zt-1,E) 1032.72 -2055.45 -2032.31 1032.72 -2055.45 -2032.31 

VC(Z,Zt-1,E,P) 1296.17 -2576.34 -2539.32 1286.2 -2554.41 -2512.75 
VC(Z,Zt-1,E,T) 1221.13 -2424.26 -2382.61 1227.49 -2436.99 -2395.34 
VC(Z,Zt-1,E,F) 1183.58 -2351.17 -2314.14 1185.29 -2352.57 -2310.92 

VC(Z,Zt-1,E,T,P) 1484.18 -2942.35 -2882.19 1489.24 -2950.49 -2885.7 
VC(Z,Zt-1,E,T,F) 2495.35 -4966.71 -4911.17 2470.53 -4909.07 -4835.02 

VC(Z,Zt-1,E,T,P,F) 1749.23 -3456.45 -3359.26 1731.47 -3420.93 -3323.74 

3.2. Prediction results and analysis 

3.2.1. Selection of the optimal variable combination 

To analyze how the different combinations and numbers 
of variables influenced the predictions of the lake water 
level by the vine copula model, the measured values were 
compared with the predicted values, and the error indices 
were calculated. The ME, RMSE, NSE, and IA index val-
ues ranged from 0.039–0.444, 0.194–0.279, 0.913–0.958, 
and 0.977–0.989, respectively. The most accurate predic-
tion was achieved with a three-dimensional vine copula 
model with the VC(Z,Zt-1,E) combination (Fig. 3). In other 
cases, the predictions of the three-dimensional vine copula 
models built with the lake water level (Z), evaporation (E), 
precipitation (P), temperature (T), and runoff flowrate (F) 

variables all produced large errors. The NSE values were 
very small or close to 0, which indicates that a vine copula 
model for predicting water levels would not be reliable if 
built with only the meteorological factors that influenced 
the water level changes. The results for artificially regulat-
ing the lake water level were mainly for the previous pe-
riod. Stochastic analysis showed that the lake water level 
was highly autocorrelated with the water level of the pre-
vious period, so it was added to the model as an input fac-
tor to investigate whether it might improve the simulation 
accuracy. 

To explore the dependency between the lake water 
level and the other variables, four-, five-, and six-dimen-
sional vine copula models were built continuously using 
the combination of variables that showed the best depend-
ency in each dimension together with other variable com-
binations. The prediction accuracies were best with the 
VC(Z,Zt-1,E,T), VC(Z,Zt-1,E,T,P), and VC(Z,Zt-1,E,T,P,F) 
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combinations, and the prediction accuracy tended to in-
crease as the number of variables increased. The predic-
tion accuracy was highest for the VC(Z,Zt-1,E,T,P,F) 
model, and the percentages of samples with relative errors 
less than 5%, 10%, and 15% were 81%, 98%, and 99%, 
respectively (for relative error statistics, the difference be-
tween the maximum and minimum water levels were used 
as the true values because of the high elevations at Erhai 
Lake). Because of the advantageous structure of the vine 
copula, inputs of different variable factors can give differ-
ent absorption results for the variable factors. It is better to 

use strongly correlated variables, to maximize the accu-
racy of the predictions and to characterize the structure of 
the variable dependency accurately. The analysis results 
showed that the long-term interannual water level changes 
in Erhai Lake were correlated with the temperature, evap-
oration, precipitation, and the runoff entering the lake, and 
that the water levels were more strongly correlated with 
temperature and evaporation than with the runoff and pre-
cipitation. 

 
Figure 3. Taylor plot of the measured values by different vine copula models. 

3.2.2. Prediction results 

The vine copula models of the three-, four-, five-, and six-
dimensional variables with the best dependencies were 
used to predict the water level of Erhai Lake from 1954–
2016. The results showed that the predicted time series and 
the observed time series almost overlapped. Over the years, 
the predicted water level of Erhai Lake tended to fall, rise, 
and then fall. The mean annual minimum (1964.48 m alti-
tude) and maximum (1965.69 m altitude) water levels oc-
curred in June and November respectively, and were con-
sistent with the mean annual minimum (1964.39 m altitude) 
and maximum (1965.64 m altitude) observed values. 
These values indicate that the models gave accurate pre-
dictions of the inter-annual characteristics of the water 
level, and closely reflected the water level trends in Erhai 
Lake. However, the prediction results for some of the 
peaks were not ideal and deviated somewhat from the ob-
served time series. It may be that, when predicting high 

and low water levels with a vine copula model, the mar-
ginal distribution of the variables cannot represent the var-
iable extreme values accurately, which then affects the 
ability of the vine copula model to simulate the joint dis-
tribution structure of different variables. 

3.3. Model pridected accuracy comparison 

The results of the vine copula models developed in this 
study were compared with the results of the SVR and 
BPNN models using the same variables. For this testing, 
the inputs to the SVR and BPNN models were the condi-
tional variables of the combination that achieved the high-
est prediction accuracy in vine copula models, and the out-
put was the water level. Comparison of the results showed 
that the lake water levels predicted by the BPNN model 
deviated considerably from the measured values (correla-
tion coefficient R = 0.96), whereas the water levels pre-
dicted by the vine copula and SVR models were relatively 
close to the measured values (correlation coefficient R = 
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0.98; Fig. 4). The vine copula and SVR models performed 
well in the dry season (from November to April of the next 
year), but the vine copula model gave better predictions in 
the wet season (May–October) than the other two model 
types. As well as producing graphs of the predicted and 
observed values, the error indices of the different models 
were calculated and compared. The vine copula model 
produced relatively low ME and RMSE values and high 
IA and NSE values (Table 3). It also achieved the highest 
percentage of relative errors less than 5%, showing that it 
was more accurate than the other two models. This is be-
cause the vine copula model can deal with variable factors 

and break down high-dimensional distributions into nu-
merous two-dimensional distributions and fully absorb 
relevant information of the variables. Further, it has a 
higher capacity to capture the nonlinear relationships be-
tween the predicted water level and climatic factors than 
the other model types. The BPNN model is highly depend-
ent on the data and the accuracy of the predictions may be 
influenced by irrelevant observed points, resulting in an 
overall low model accuracy. Many of the values predicted 
by the BPNN model deviated considerably from the meas-
ured values, as shown in Fig. 4. 

 

 
Figure 4. Comparison of the simulated monthly water levels from the different models and the observed values 

 
Table 3. Comparison of the prediction performance of the different models 

Model type Statistical index Relative error statistics 

ME RMSE IA NSE 5% 10% 15% 20% 

C-Vine copula 0.048 0.194 0.989 0.958 0.81 0.98 0.99 1 

SVR 0.020 0.212 0.985 0.950 0.72 0.99 1 1 

BP 0.057 0.294 0.976 0.904 0.57 0.91 0.99 1 

4. Method application 

4.1. Building vine copula models for predicting 
daily water level in Erhai Lake 

The vine copula models with different combinations of 
conditional variables were applied to simulate and predict 
the daily water level for 2000–2014 using the meteorolog-
ical dataset (including E, T, P) and the verified daily water 
level data of Erhai Lake (2000–2014) for the same period. 
The error indices of the models were calculated and com-
pared. The ME values ranged from 0.02–0.09, the RMSE 

values ranged from 0.02–0.024, and the NSE and IA val-
ues both reached 0.99. These values show that the accu-
racy of the predicted daily water level was considerably 
higher than that of the monthly water level, and the higher 
accuracy reflects the larger data set that was used in the 
prediction (5479 samples). The daily water level was 
highly correlated with the water level of the previous day, 
and the Kendall correlation coefficients reached 0.99. 
Therefore, when the daily water level was predicted with 
different combinations of meteorological variables, the ef-
fect on the prediction results was minimal. The predicted 
time series of the daily water level obtained with the 
VC(Z,Zt-1,E,T,P) achieved the highest prediction accuracy, 
and essentially overlapped with the measured time series 
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(Fig. 5). The predicted values and observed values of the 
daily water level were strongly correlated, with a correla-
tion coefficient (R) of 0.99, which shows that the predic-
tion was highly accurate. 

 
Figure 5. Simulated and observed value of the daily water level from vine copula mode 

4.2. Rapid prediction output of lake water level 
at monthly scale 

There was no systematic analysis of runoff in Erhai Lake 
and its surrounding areas after 2016. Therefore, the water 
levels for 2017–2021 were predicted from the monthly 
meteorological data (including E, T, P), and different com-
binations of conditional variables were substituted into the 
vine copula model. The ME, RMSE, NSE, and IA values 
ranged from 0.009–0.048, 0.122–0.198, 0.706–0.888, and 
0.905–0.968, respectively. The prediction accuracy was 
lower than that for 1954–2016. The information about the 
variable factors could not be fully extracted because of a 
lack of runoff data and the small amount of sample data. 
However, the prediction accuracy was always highest for 
the combination with the highest number of variables, 
namely, the vine copula model with VC(Z,Zt-1,E,T,P). For 
this combination, the percentages of relative errors less 
than 5%, 10%, 15%, and 20% were 42%, 73%, 87%, and 
95%, respectively. All the vine copula models with differ-
ent variable combinations produced smaller errors for No-
vember–April than for May–October. The trends of the er-
rors were basically the same, and displayed an M-shaped 
pattern. There were two peaks in June, July, and Septem-
ber, which was similar to the pattern of systematic errors 
calculated when predicting the daily reference crop evap-
otranspiration [47]. The mean error of the predicted values 
and the measured values corresponding to each month 
from 1954 to 2016 was used as a correction term and was 
substituted into the vine copula model with the highest 
prediction accuracy. Using this process, the percentages of 
relative errors less than 5%, 10%, 15%, and 20% increased 
to 70%, 83%, 95%, and 98%, respectively. The monthly 
water level changes in Erhai Lake are shown in Fig. 6. The 
results for the monthly observed water level and predicted 
values were still unsatisfactory for a few specific time pe-
riods, with deviations mainly in March–July 2019 and 
July–October 2021. It is possible that the precipitation and 
evaporation were distinctly different and showed sudden 
increases or decreases between these months and the adja-
cent months, which influenced the description of the data 
characteristics and reduced the accuracy of the predictions 
from the vine copula models. The monthly scale vine cop-
ula model for the short-term water level was tested for sta-

tionarity, and the results showed that this process was sta-
tionary and random. The construction of the vine copula 
model was more straightforward when the time indicator 
was omitted. The long term water level series predicted by 
the monthly scale vine copula model was non-stationary 
and the prediction accuracy was good, even with no pro-
cessing of the data. 

The minimum and suitable ecological water levels of 
Erhai Lake were determined from the water level guaran-
tee rate [60]. These were overlain on the graph of the pre-
dicted monthly water level to show and compare the rela-
tionship between the rises and falls of the water level and 
the regulation and early warning for the lake ecological 
water quantity. The maximum and minimum monthly op-
erating water levels of Erhai Lake are determined from 
lake regulation and water supply, flood protection, and 
water resources allocation planning [61]. It was selected 
as the monthly minimum water level control threshold of 
a given time period that the higher value between the min-
imum operating water level and the minimum ecological 
water level. For most of 2017–2021, the measured and pre-
dicted water levels of Erhai Lake were between the suita-
ble ecological water level and the minimum water level 
(Fig. 6). They were only below the minimum ecological 
water level from November 2019 to January 2020, possi-
bly because of the low precipitation during this period. 
Thus, to ensure the water level remains above the mini-
mum water level for operation, the water storage should 
be increased and the lake outflow rate should be reduced. 
It may have been appropriate to increase the water supply 
to the Binchuan Basin from September 2020 to July 2021 
to ensure that the lake water level was maintained between 
the minimum and suitable ecological water levels for as 
long as possible and to maximize the benefit from the wa-
ter supply. 

 
Figure 6. Water level changes in Erhai Lake from 2017 to 2021 
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5. Conclusions 

In this study, C- and D-vine copula models were intro-
duced, based on the correlation differences between vari-
ables. Three-, four-, five-, and six-dimensional joint distri-
bution models were built with different combinations of 
hydro-meteorological variables (evaporation, temperature, 
precipitation, and runoff flowrate) and water level (water 
level of the current time period and the previous period) to 
predict the long-term time series of the water level in Erhai 
Lake. Errors in the prediction models were reduced by 
making rolling decisions and correcting the water level in 
real-time. The selection of the variable combination and 
the vine copula structure affected the accuracy of the pre-
dictions of the lake water level. The C-vine copula was 
used more frequently than the D-vine copula, as it had a 
stronger ability to capture the dependent structure between 
the hydro-meteorological variables and the water level, 
and the prediction accuracy was improved by introducing 
strongly correlated variables. The models were then ap-
plied to predict the daily and monthly water levels for the 
period with no runoff data, and the results were compared. 
The prediction accuracy was always highest for the model 
combination with the most variables, and the prediction of 
the daily water level was more accurate than that of the 
monthly water level. In addition, the autocorrelation was 
stronger for the daily water level time series than for the 
monthly water level time series. For the monthly water 
levels predicted by the vine copula model, the ME, RMSE, 
NSE, and IA values ranged from 0.039–0.444, 0.194–
0.279, 0.913–0.958, and 0.977–0.989, respectively. The 
ME and RMSE values for the daily water level in the lake 
were between 0.02–0.09 and 0.02–0.024, respectively, 
while the NSE and IA values reached 0.99. Accordingly, 
the vine copula model was more accurate for predicting 
the water levels over the short-term. When water levels are 
predicted without runoff data, the results should be cor-
rected by inversely substituting systematic errors into the 
vine copula model with the highest prediction accuracy. 
With this approach, the percentages of the relative errors 
in the prediction accuracy less than 5%, 10%, 15%, and 
20% reached 70%, 83%, 95%, and 98%, respectively. It is 
worth noting that the vine copula model was limited by the 
sample size and the prediction accuracy decreased as the 
number of samples decreased. As far as possible, long-
term time-series data should be used when applying the 
vine copula model. 

Comparison of the monthly water levels predicted by 
the vine copula, BPNN, and SVR models showed that the 
vine copula model had the best performance. The vine 
copula and the SVR models performed well in the dry sea-
son (November–April of the next year), whereas the vine 
copula model gave the best performance in the wet season 
(May–October). The vine copula model is better at dealing 
with the nonlinear relationships between the predicted wa-
ter level and climatic factors than other model types, and 
can also indicate the trends in water level and the inter-
annual variations in the water level. However, there were 
deviations in some peaks, possibly because the marginal 
distribution of the variables poorly represented the ex-
treme values of the variables when the vine copula was 

predicting low- or high-water levels. These promising re-
sults show that it is worth evaluating the advantages and 
disadvantages of the vine copula simulation method in fu-
ture studies. 
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