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Abstract—Taking the air pollution monitoring data of 34 air monitoring stations in Beijing from February 8 
to February 9, 2020, as an example. A spatiotemporal dynamic interpolation model of PM2.5 based on a 
multi-source pollution model was established. Based on the hourly spatiotemporal data of the day, the 
dispersion and attenuation of non-point source pollution in Beijing were interpolated. An improved hybrid 
genetic algorithm was used to solve the parameters of the air pollution model. The spatiotemporal Kriging 
model was used to predict the PM2.5 concentration diffusion on an hourly scale. The data of this area were 
analyzed quantitatively and qualitatively. The prediction data based on the spatiotemporal data before the 
current time was verified by the actual monitoring data. The results show that the model and method 
constructed in this paper could simulate and predict PM2.5 concentration on an hourly scale well, which could 
provide a good reference for the analysis, simulation, and prediction of air pollution. 

1. INTRODUCTION 
It is generally believed that the higher amounts of sulfate, 
nitrate, ammonium and organic matter in PM2.5 are due to 
the heavy traffic or vehicle emission and the burning of 
solid fuels in most parts of China [1]. From the end of 
January to the middle of February in 2020, it was in the 
period of the Chinese Spring Festival. It was also in the 
period of epidemic prevention and control in Beijing. There 
were few motor vehicles on the road, and most factories 
and construction sites had stopped production and work. 
Moreover, there was little dust. Besides, the policy of coal 
to gas and the ban on fireworks has been implemented in 
recent many years. The overall level of social activities in 
Beijing had also been reduced. The emission of pollutants 
had also been reduced. However, during this period, there 
were still two heavy pollution weather processes. 
According to the data, during these heavy pollution 
weather processes, Beijing, Tianjin, and the Hebei region 
just encountered unfavorable weather conditions, including 
high temperature, high humidity in winter, almost no wind 
or very small wind. 

In recent years, there are more and more researches on 
the harm of air pollution to human health. Air pollution has 
become a public health problem. High concentration 
particulate matter (PM2.5) is associated with lung cancer, 
cardiovascular diseases, respiratory diseases, and 
metabolic diseases [2-4]. The scientific prediction of 
PM2.5 concentration can help to reduce health risks and 
economic losses. Many scholars have done much research 
on the simulation and prediction of air pollution at home 

and abroad. The concentration of PM2.5 in the air is 
unstable with time, and most of it comes from artificial 
pollution [5]. Chen [6] and Xie [7] predicted PM2.5 using 
data of different scales. Liu [8] proposed a hybrid model 
composed of five algorithms: wavelet packet 
decomposition (WPD), gradient lifting regression tree 
(GBRT), linear programming lifting (LPBoost), multi-
layer perceptron (MLP), and Dirichlet process hybrid 
model (DPMM) to simulate and predict the pollutant data 
collected in Tangshan at four different time intervals. 

The existing air quality prediction methods include the 
deterministic method, statistical method, machine learning, 
and deep learning method. Many methods such as machine 
learning, neural network, and random forest are used in 
PM2.5 prediction. Junfei [9] proposed a PM2.5 prediction 
method based on image contrast-sensitive features and 
weighted banded neural network (WBBNN). Danesh [10] 
combined the satellite aerosol optical depth (AOD), land 
use, and meteorological data to create a daily PM2.5 
prediction model by using the integrated machine learning 
method for Greater London from January 1, 2005, to 
December 31, 2013. The prediction method was carried 
out on 3960 grid cells in the ratio of 1 km × 1 km. In the 
prediction of PM2.5, the data used are more and more 
diverse, such as satellite, meteorological data, ground-
based PM2.5, and geographic data [11] [12] [13]. 

Most of the above prediction methods only analyze the 
temporal dimension of PM2.5 in the long time series or the 
spatial dimension of PM2.5 distribution in different 
sampling points. The time scale is generally in the annual 
change, monthly change, or daily change, and the ability 
to predict the spatial variability is weak. At the same time, 
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the linear relationship is analyzed, but the law of 
atmospheric turbulence in the process of pollution 
diffusion and aggregation in a short time is ignored. 
Moreover, the prediction modeling analysis of PM2.5 
concentration from aggregation, stability to diffusion 
process is not realized.

At present, real-time air pollution monitoring has 
become an important method to control pollution. 
However, due to the high cost of construction, the 
monitoring range of the monitoring station is limited, and 
it is unable to monitor the concentration of all air 
pollutants in every corner in real-time. Therefore, the 
overall understanding of the spatial and temporal 
distribution of air pollution is usually lacking. A 
comprehensive spatial and temporal analysis and air 
pollution control cannot be carried out. The satellite 
remote sensing and spatial interpolation/extrapolation 
techniques have been widely used to solve this problem in 
recent years. Spatiotemporal geo-statistics has become a 
research hotspot in the atmospheric environment and 
dynamic distribution of biological population because it 
can use spatiotemporal interpolation, random simulation 
estimation, and quantify spatiotemporal changes to reflect 
the process of geographical spatial changes dynamically.

In this paper, we used spatiotemporal data to simulate 
the distribution characteristics of PM2.5 in time and space. 
Then we analyzed the spatiotemporal distribution of PM2.5 
and predicted the diffusion of PM2.5 with time by using 
the diffusion law of the atmospheric diffusion model and 
the correlation of data in adjacent space and time. The 
cross-validation was carried out by the measured data with 
the spatiotemporal interpolation results of the same day and 
the measured data with the forecast results based on the 
previous day's data in the hourly time scale of the second 
day. The reliability and superiority of the proposed method 
were proved.

2.MATERIAL AND METHOD

2.1 Hypothesis of the problem

Although due to meteorological factors, a stable state does 
not exist. However, the distribution of air pollutants does 
not change rapidly; there is always a process of change and 
diffusion. To facilitate research and analysis, we can 
assume that it is stable in a certain period. Then, according 
to the diffusion model, the distribution of air pollutants at 
the next set time point is dynamically predicted. This paper 
assumes that:

First, the influence of air temperature, air pressure, and 
humidity on PM2.5 distribution is not considered; only 
wind speed and direction are considered.

The second, Ignoring the vertical distribution of PM2.5, 
the three-dimensional problem is transformed into a two-
dimensional problem.

The third, the pollutant obeys the diffusion law, and the 
change of diffusion process on the concentration axis is 
Gaussian distribution.

Fourth, when the wind speed and direction are added, 
the wind is stable in the set period, and the mutation factors 

and the influence of urban buildings on the wind direction 
are ignored.

The fifth, 34 air monitoring stations in Beijing are 
regarded as point spread pollution sources; the algorithm 
assumes eight pollution sources in eight directions around 
Beijing to simulate external pollution sources.

The sixth, under the same conditions, the attenuation 
coefficients of matter in different directions are the same.

2.2 Establishment of the model

Gaussian model can take wind direction and wind speed 
into account but cannot attenuate. The partial differential 
model cannot define wind direction and wind speed, but it 
can attenuate. For the assumption in this paper, these 34
monitoring points are not real pollution sources. Wind 
speed and direction have a great influence on the Gaussian 
model, and the Gaussian model cannot be attenuated. The 
Gauss large-space point-source diffusion model is 
compared with the partial differential diffusion model for 
Beijing under the stable weather during the epidemic 
period. The partial differential diffusion model with 
stronger adaptability and attenuation is selected.

At the same time, another assumption is made that in 
selecting monitoring points, it must be considered that the 
pollution here is serious and it is the source area. Therefore, 
PM2.5 of the whole city comes from these 34 pollution 
sources and external pollution sources. Diffusion and 
attenuation are considered based on these pollution sources, 
and spatiotemporal dynamic interpolation is performed for 
other spatiotemporal data.

Suppose a pollution source from which a matter begins 
to spread around with the change of time t. The diffusion 
coefficients along the x, y, and z directions are constants a, 
b, and c, respectively. Attenuation (e.g., absorption, 
metabolism, etc.) makes the mass decrease proportional to 
the concentration. Moreover, the concentration of this 
matter in the surrounding space is zero before diffusion. 

The partial differential diffusion attenuation model 
shown in formula (1) is a linear parabolic equation with 
constant coefficients. It is the mathematical model of the 
attenuation diffusion process.

u           (1)

The distribution of PM2.5 within 0-200m near the 
ground is almost unchanged. Atmospheric monitoring 
stations are usually set near the ground. Therefore, the 
PM2.5 diffusion model can be flattened. That is to say, we 
only consider the distribution of PM2.5 in the horizontal 
plane and ignore the distribution of PM2.5 in the vertical 
direction. Therefore, for each pollution source with a total 
pollutant amount of G located at , the general 
analytical solution of diffusion is:

(2)

Therefore, it is necessary to calculate the parameters a, 
b, and k in the above formula (2).

Generally, the pollution sources of a city are divided 
into external pollution and local pollution. During the most 
serious period of the epidemic in February in Beijing, 
according to the prevention and control requirements, most 
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people work at home and go out less. A large number of 
the service industry, industrial enterprises, and other 
industries shut down production. Only the infrastructure 
works. In theory, air pollution is low. It is convenient to 
analyze the sources and characteristics of air pollution in 
Beijing under objective conditions. Equation (2) is the 
prediction model of PM2.5 point source diffusion affected 
by a single source. In fact, in the case of multi-source 
emission, the concentration contribution to any point in the 
evaluation area results from the superposition of multiple 
pollution sources. Therefore, it is necessary to establish a 
multi-source PM2.5 diffusion prediction model under the 
joint influence of multi-source based on the PM2.5 point 
source diffusion model under the influence of a single 
source. The PM2.5 diffusion prediction model established 
in this way is closer to the actual situation.

In this paper, 34 air monitoring stations in Beijing are 
regarded as point source pollution sources. The sources of 
PM2.5 concentration measured by any monitoring station 
include the contribution of the monitoring station itself, the
diffusion superposition contribution of other monitoring 
stations, and the contribution of external continuous 
pollution sources. The results of pollution superposition 
can be obtained by chemical mass conservation model as 
formula (3):

                          (3)

is the concentration matrix of each pollution source 
contributing to the monitoring station. W is the weight 
matrix of the contribution of each pollution source to the 
monitoring station. Z is the sum matrix of the contribution 
of each pollution source to the monitoring station.

Therefore, the spatial and temporal concentrations of 
PM2.5 at various monitoring stations in Beijing are as 
follows:

                         (4)

is the pollutant concentration value calculated 
according to formula (2) at time t of the monitoring station 
i. is the actual monitoring value of pollutants at 
the previous time point of the station. is the contribution 
of multiple pollution sources to the station during the 
diffusion process.

When there are N pollution sources in M periods, for 
the single monitoring station point , formula (3) 
can be expanded as follows:

             (5)

is the contribution concentration of pollution 
source N to the monitoring station when the time is M. WN 
is the weight of pollution source N. is pollution 
concentration received from external of the monitoring 
station when the time is M. Therefore, for any time m, the 
received concentration of the monitoring station is the 
linear superposition of the contribution concentration of 
each pollution source. It is shown in formula (6):

                     (6)

is the contribution concentration of each 
pollution source. It is calculated through formula (2) and 
shown in formula (7):

(7)

Through above formula, we can see that the unknown 
parameters in this method are a, b, k, and N pollution 
sources, namely N + 3 unknown parameters. For formula 
(5), W is solvable when M > N. W can be calculated by 
matrix inversion when M = N. When M < N, it can only be 
solved by an optimization algorithm, such as least square 
algorithm, genetic algorithm, simulated annealing 
algorithm and so on.

Generally, the relationship between the pollution 
source and the concentration received by the sensor has the 
strongest correlation with the distance and wind direction. 
Generally, the closer the distance is, the higher the 
contribution concentration is, and the greater the influence 
weight is. In this paper, it is assumed that the relationship 
is an inverse distance weighted linear relation.

The effect of multiple pollution sources on the same 
monitoring station are mutually superimposed and 
influenced. To simplify the calculation process, this paper 
is based on the principle that the closer the distance, the 
greater the impact on the monitoring station. The formula 
for calculating the weight matrix W is set as formula (8):

                               (8)

is the distance between the pollution 
source n and the monitoring station .

The effect of each pollution source on the monitoring 
site can be obtained by weighting the distance 
between them.

In this paper, the improved hybrid genetic algorithm 
proposed in previous research solves N + 3 parameters. The 
designed fitness formula minF(S) is as follows:

(9)

R is the number of pollution monitoring stations. The 
number of available monitoring stations in Beijing is 34. M 
is the period. The data used in this paper is 24 hours a day. 
M is set as 24.

Interpolation is divided into two steps: first, 
quantitative analysis of the spatial structure of sample 
points, and then, prediction of unknown points. The general 
formula of spatiotemporal interpolation is as follows:

               (10)

For any space-time point Z (s, t) that needs dynamic 
interpolation simulation, the weight λ is calculated by 
constructing the following weight matrix (formula 11) with 
the origin of Z (s, t) coordinate

                            (11)

In formula 11,

, ,
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. is the weight matrix. is the spatiotemporal 

coefficient of variation. is the spatial 
distance between sample points. is the time distance 
between sample points.

Spatial statistics assumes that regionalized variables 
have spatial limitations, continuity, and anisotropy. The 
continuity of different regions is described by a semi-
variogram. The main semi-variogram models are the 
spherical model, exponential model, Gaussian model, 
power function model, and parabolic model. When a single 
model cannot express, two separate models can be used for 
simulation and combined. To explain the physical meaning 
of space, time, and space-time, the spatiotemporal 
variogram used in this paper is the Bilonick spatiotemporal 
separation model:

       (12)

is the spatial variogram. is the time 
variogram. is the spatiotemporal variogram. 

. is the spatiotemporal set 
divergence ratio. After merging and simplifying, the 
spatial-temporal variogram is as follows:

(13)

, , , , , and are the seven parameters 
to be solved.

3.TEST AND ANALYSIS

3.1 Overview of Data Sources

The terrain of Beijing is high in the northwest and low in 
the southeast. Xishan is in the west, belonging to Taihang 
Mountains. Jundu mountain is in the north and northeast, 
belonging to Yanshan Mountains. The highest peak is 
Dongling Mountain in Mentougou District, West Beijing. 
The lowest ground is the southeast boundary of Tongzhou 
District. The average altitude of Beijing is 43.5 meters. 
The altitude of Beijing Plain is 20-60m, and that of the 
mountainous area is 1000-1500m. The change process of 
PM2.5 includes occurrence and evolution. Moreover, the 
evolution includes diffusion and attenuation. There are 35 
air quality monitoring stations in Beijing, including 12 
urban environmental assessment stations, 11 suburban 
environmental assessment stations, seven control points 
and regional stations, and five traffic pollution monitoring 
stations. They cover six districts and ten counties in 
Beijing, and the coverage can reflect the air quality of the 
whole Beijing area. In the data obtained in this paper, due 
to too much missing data of the botanical garden 
monitoring station, the monitoring station was deleted, and 
the remaining 34 monitoring stations were used. The data 
source of this paper is the website of the Beijing 

environmental protection monitoring center 
(https://beijingair.sinaapp.com). The daily hourly mean 
PM2.5 concentration data of 34 monitoring stations in 
Beijing in February 2020 were published.

3.2 Simulation and Prediction

It is assumed that the diffusion of pollutants is from high 
concentration areas to low concentration areas under 
meteorological conditions in this paper. Therefore, when 
superimposing multi-source diffusion, it is necessary to 
consider comparing between the monitoring station 
concentration and the diffusion point concentration. If the 
concentration of the diffusion point is low, the effect on 
the increase of the concentration of the monitoring station 
is small. It can be seen that three main factors affect the 
efficiency of pollutant diffusion calculation: the number of 
pollution sources, the size of the calculated pollution area, 
and the spatial resolution of the model. In this paper, 
monitoring stations and external pollution sources are set 
as point source pollution sources for a pollution 
accumulation process from 13:00 on February 8 to 6:00 on 
February 9. Then the number of pollution sources is N = 
42 (including eight external pollution sources), the time is 
M = 24, and the number of monitoring stations is R = 34. 
The number of unknown parameters is 45. Because M < N 
in formula (5), we can only use an optimization algorithm 
to solve unknown parameters. In this paper, the improved 
hybrid genetic algorithm is used to calculate the amount of 
pollution.

Because the external pollution is not clear, eight 
external pollution sources are initially assumed in eight 
directions of Beijing. When the pollution source is set in 
the next iteration, the direction with a proportion less than 
0.1 is excluded. Iteration stops until the result of the next 
iteration is consistent with that of the previous iteration. 
Thus, the position of the pollution source can be roughly 
determined. For example, in this experiment, the 
proportion of pollution in the north and northeast 
directions is less than 0.1 in the first iteration (Figure. 1). 
The pollution sources in these two directions are 
eliminated. At the beginning of the second iteration, there 
are 40 pollution sources, including six external pollution 
sources. The results of the second iteration are shown in 
Figure 2, and the pollution sources in the northwest and 
East directions are eliminated again. In the third iteration, 
there are 38 pollution sources, including four external 
pollution sources, and so on. It can be known that the main 
external pollution sources in Beijing during the epidemic 
period were the pollution sources in the southwest and 
Southeast directions (Figure. 3). After data inquiry, there 
are two large point source emissions of heavy industry in 
the southwest and southeast of Beijing. Therefore, it is 
inferred that the pollution is due to the diffusion and 
convergence of pollutants from these two directions to the 
urban area of Beijing. Moreover, the pollutants from these 
two directions are superposed with the pollution emissions 
from the urban area of Beijing. With the low wind speed, 
high humidity, and low atmospheric boundary layer height, 
the heavy pollution process of particulate matter is caused 
by the heterogeneous explosive growth of nitrate.
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Figure 1. Distribution map of pollution sources in the first 
iteration

Figure 2. Distribution map of pollution sources in the second 
iteration

Figure 3. Distribution map of pollution sources in the final 
iteration

Prior knowledge (remote sensing data) can roughly 
infer that the external pollution sources in Beijing come 
from the southwest and Southeast directions, which is 
roughly consistent with the experimental results.

In this paper, the spatiotemporal Kriging method can 
be used to interpolate the spatiotemporal distribution of 
pollutants at any time and show the spatiotemporal change 
process of pollution superposition. In this paper, if we 
directly use all the data for spatiotemporal dynamic 
interpolation, we will find that the calculation matrix is 
particularly large. Even so, there is still a large error 
between the final predicted value and the actual 
monitoring value. Through the analysis, it is found that the 
correlation of some data between the time series data of 
different monitoring stations and the monitoring stations 
series data of different times is not strong, and some are 
even negative. It is mainly due to the large administrative 
scope of Beijing and the inconsistency of atmospheric 
turbulence activities between the central area of Beijing 
and the suburbs out of the sixth ring road. Therefore, to 
improve the accuracy of spatiotemporal interpolation and 
prediction, the selection of interpolation samples for each 

contribution point is improved in the spatiotemporal 
Kriging method. Among them, the process of selecting the 
point with the greatest contribution to each prediction 
point is as follows:

The first step is to screen candidate points. The nearest 
monitoring station to the prediction point Z x0, 
y0, t0 is obtained by calculating the space-time distance. 
Calculate the correlation coefficient R (y0, yi) between the 
time series y0 of the i station and the time series yi of other 
stations (Fig. 7), and calculate the correlation R (t0, Tj) 
between the spatial series data Ti at t0 and other spatial 
series data. Sort R (y0, yi) (i=1,2……34) and R (t0, Tj)

j=1,2……24 in reverse order. C points of time or 
space series with the largest correlation coefficient are 
selected as candidate points.

Step 2: select k points that contribute the most. Among 
the C candidate points obtained in the previous step, the 
space-time distance between the prediction point and 
the candidate point is calculated. All the space-time 
distances are sorted, and P points with the smallest space-
time distance are selected as P points with the greatest 
contribution.

To predict the future time point t + n of the 
interpolation point, that is, the time value in the space-time 
distance increases, the PM2.5 concentration of the future 
time point n can be predicted.

For the currently predicted time-space point Z (x0, y0, 
t0), substitute the surrounding data selected in the above 
steps that make the greatest contribution to the time-space 
point Z (x0, y0, t0) into formula (10) to calculate the 
estimation of the currently predicted time-space point. The 
program interpolates the other time and space points in 
turn and obtains the PM2.5 concentration distribution map 
of the Beijing urban area on the hourly time slice.

From 1:00 on February 8 to 24:00 on February 9, the 
positions of 34 monitoring stations were interpolated as 
unknown points. RMSE (14), MAE (15), and P (16) were 
used to evaluate the results of interpolation and prediction.

(14)

             (15)

            (16)

is the interpolation or prediction value.
is the monitoring value. M is the number of times. R is the 
number of monitoring stations. Moreover, n is the number 
of interpolation data or prediction data.

Using the Spatio-temporal data of 24 hours on
February 9th, the PM2.5 concentration of next 1 hour was 
predicted (Figure. 5). Moreover, cross-validation (TABLE 
I) was carried out.

Figure 4. PM2.5 concentration prediction curve for the next 1 
hour

)
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TABLE I. CROSS-VALIDATION RESULTS OF 6-HOUR 
PREDICTION

Time RMSE MAE P

next 1 hour 3.87 16.83 94.73%

4.CONCLUSIONS
In this paper, a model was established to simulate the 
diffusion process of air pollution in Beijing during the 
epidemic period in February. The improved hybrid genetic 
algorithm is used to settle the parameters in the multi-
pollution source diffusion model, and the model 
parameters are obtained. Using the spatiotemporal Kriging 
method, the PM2.5 concentration at different time points in 
other locations can be obtained by hourly spatiotemporal 
interpolation of the heavy pollution process, which can 
simulate the evolution process of heavy pollution and can 
be used to interpolate and predict the PM2.5 concentration 
hourly in the future. Quantitative and qualitative analysis 
was taken for the result data. Using the actual monitoring 
data to verify the prediction data, to prove the effectiveness 
of the spatiotemporal dynamic interpolation simulation and 
prediction method. The results show that the model and 
method constructed in this paper can well simulate and 
predict the change of PM2.5 concentration on the hourly 
scale and can provide a reference for the analysis, 
simulation, and prediction of air pollution.

In this paper, the basic parameters lack a unified and 
perfect theoretical basis when the modified hybrid genetic 
algorithm is used to fit the variation function of Time-
Space Theory. At the same time, it is difficult to get the best 
fitting result in a single fitting of the spatiotemporal 
theoretical model, which requires multiple fitting or 
manual debugging. At present, the fitting result is only a 
better fitting result. Therefore, in the next step of research, 
we can combine this algorithm with other intelligent 
optimization algorithms to train the data of longer time 
series to improve the prediction accuracy.
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