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Abstract. Nowadays, providing health, well-being, productivity and energy efficiency to users inside
buildings is essential. Applying these aspects aligned with sustainability becomes necessary to reduce the
use of heating, ventilation, and air-conditioning (HVAC) systems. These systems are currently used to
provide better thermal conditions to the occupants, who spend around 80% of their time indoors. The actual
thermal conditions can be affected by several factors, such as the climatic type of the region, orientation,
size, building type, and energy levels, among others. To assess thermal conditions inside buildings, several
thermal comfort models have been developed over the years. However, the Predicted Mean Vote (PMV)
created by Fanger is still the most common model to assess thermal comfort indoors. In this context, this
research aimed to analyze thermal comfort conditions in university classrooms in Southern Brazil. By
collecting the environmental and personal variables of thermal comfort and the mean thermal sensation of
students through measurements and questionnaires, a total of 519 responses were obtained during the
Brazilian autumn. A statistical cluster analysis was performed to classify individuals according to their
sensations. Differences between genders were verified and changing indoor temperatures lower in winter

would therefore save HVAC energy without impacting occupant comfort.

1 Introduction

Energy consumption in environments has become
increasingly prominent, especially in the construction
sector. Thus, several researchers point out that the
presence of variability in indoor environmental
conditions makes it necessary to reduce energy
consumption and improve the perception of comfort [1].
Moreover, buildings' indoor environmental quality
(IEQ) and energy distribution should be made available
smartly, according to their demand, and directed to
people [2].

To wunderstand what makes an environment
considered thermally comfortable, several models have
been developed to verify thermal comfort under
environmental and personal aspects. Thermal comfort
consists of a physical-physiological process that
describes the thermal sensation of people [3]. Among
the most usual models is the Predicted Mean Vote
(PMV) developed by Fanger [4], which performs only
34% in results [5], and adaptive models, which can show
more reliable results in some cases [6].

Conducting thermal comfort studies is of paramount
importance for the health of environmental users,
improved productivity, and sustainable development. In
various situations, heating, ventilation, and air
conditioning (HVAC) systems become alternatives to
improve thermal comfort. However, these systems are
drivers of high energy consumption in buildings and are
associated with indoor environmental quality [7].
Moreover, the presence of faults in these systems causes
damage to the indoor environment and reduces energy
efficiency [8].

Several thermal comfort studies have been
conducted in various countries and environments, such
as nursing homes in Spain [9]; parks in China [10];
offices in Australia [11]; classrooms in Ecuador [12],
among others. In conjunction with these studies,

numerous statistical methods are applied to investigate
thermal comfort, such as factor analysis [13]; Bayesian
statistics [14]; logistic regression [15]; Griffiths analysis
[16], and discriminant analysis [17]. Another technique
used is cluster analysis which seeks to separate objects
into groups according to their maximum level of internal
similarity [18].

Bennetts et al. [19] applied cluster analysis to check
people's characteristics to develop thermal personalities
based on beliefs, ideas, and location. Lin and Tsai [20]
used clusters to recognize tree species capable of
enhancing thermal comfort. Anjos et al. [21]
investigated climate data to check which days had
similar weather conditions.

In this context, the main objective of this research is
to analyze thermal comfort conditions in university
classrooms in southern Brazil by using cluster analysis,
to classify individuals according to Thermal Sensation
Vote (TSV), Predicted Mean Vote (PMV), Thermal
Preference Votes (PREF) and percentage of dissatisfied
(PPD), verifying the differences between genders.

2 Materials and Methods

2.1 Characterization of the area, building, and
study population

Data were collected in classrooms at the Federal
University of Technology - Parana (UTFPR), in the city
of Ponta Grossa, southern Brazil, under a humid
temperate climate with moderately hot summer (Cfb)
[22], categorized by the Koppen-Geiger Climate
Classification.

The university has several classroom blocks, a
restaurant, laboratories, and places for physical
activities and sports. The data were collected in blocks
L and P classrooms built of traditional masonry. Figure
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1 contains the floor plan of the classrooms, which have
a capacity for 42 students and an area of approximately
65 m>.
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Fig. 1. Representation of the floor plan of the classrooms. [23]
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The participants of this study were students regularly
enrolled in some undergraduate courses at UTFPR.
Regarding the environmental variables used, they had
air temperature (°C), mean radiant temperature (°C), air
velocity (m/s), and relative humidity (%) that were
obtained through 50 measurements that corresponded to
519 valid responses raised between March 23™ to June
14% 2022, Figure 2 shows the most relevant information
about this study.

City: Ponta Grossa, Parana, Brazil

Year of data collection: 2022

Number of individual responses: 519

Number of environmental measurements:

Construction type / co strategy:
Classroom / natural ventilation

A Age: 17 to 49

Fig. 2. Study information.

Due to the amount of data collected, it was not
possible to obtain the number of people analyzed
because the surveys were conducted during the morning,
afternoon, and evening shifts; thus, there is the
possibility of students being enrolled in courses of more
than one shift that are held in the same environment. So,
their preferences and thermal sensations may change
throughout the day. For these factors, it was opted to
count the number of participants through individual
responses.

2.2 Data
application

collection and questionnaire

The environmental and personal variables were
obtained as presented in the study by Pereira and Broday
[24]. The equipment used resembles a microclimate
station BABUC-A, produced by Briiel and Kjaer. The
personal variables obtained were age, weight (kg),
height (cm), gender (female/male), clothing worn, and
Thermal Sensation Votes (TSV) according to the seven-
point scale of ISO 7730 [25] (+3 hot, +2 warm, +1
slightly warm, 0 neutral, -1 slightly cool, -2 cool, -3
cold) and thermal preference (PREF) presented in ISO
10551 [26] (+3 much warmer, +2 warmer, +1 a little

warm, 0 neither warmer nor cooler, -1 slightly cooler, -
2 cooler, -3 much cooler).

The questionnaire was applied digitally, where the
participants answered through electronic devices to
speed up the information collection process; in the end,
only 21 answers were excluded due to incorrectly filled-
out fields. The measurements were taken during classes
that lasted around 1h40min, being a satisfactory time for
the application of the questionnaire and measurement of
environmental variables in which the equipment was
positioned in the middle of the room 0.6m above the
ground as recommended by ISO 7726 [27] for sedentary
activities, such as in the classroom.

For 20 minutes, the equipment was turned on before
the beginning of the measurement so that it could
stabilize itself with the environment in question. Soon
after this period, data recording started, which lasted
about 40 minutes, with readings every 3 minutes,
totaling 13 variables per measurement, where the data
averages were obtained. Before the measurement was
finished, the questionnaire was applied to the students
who agreed to participate voluntarily.

Through the questionnaire, the students indicated
the clothes they used so the clothing insulation could be
calculated according to ASHRAE 55 [28] and ISO 9920
[29] parameters; furthermore, the air velocity was taken
as 0.1 m/s following the studies by Zhou et al. [30] and
Singh, Gupta, and Sharma [31]; finally, the metabolic
rate was taken as 1.2 met according to ISO 8996 [32] for
sedentary activities.

2.3 Software applied in the research

The Center for the Built Environment [33] at the
University of Berkeley developed a thermal comfort
tool to calculate the PMV and PPD, which was adopted
in this research. Then, the data obtained through the
equipment and questionnaire were organized in MS
Excel® so that the statistical analysis could be done in
IBM SPSS Statistics, version 23. To obtain the operative
temperature (Top) in each of the measurements, the
simple average between the air temperature (t.) and the
mean radiant temperature (trm) was calculated [34].

To analyze the individual data regarding the 519
responses, an average was performed with the values of
each measurement corresponding to the TSV, PREEF,
PMV, and PPD for each gender. In other terms, for each
of the 50 measurements taken in the classroom, it was
expected to get one average value of each variable for
women and another for men, that is, 100 average values.
However, in six of these measurements, there were only
students of a single gender, thus totaling 94 mean values,
45 for females and 49 for males.

Thus, it was possible to perform the K-means
Cluster analysis to classify the individuals with the
greatest thermal similarity. At first, the variables are
standardized so that they contribute in a uniform way to
the results. Soon after the standardization, the cluster
analysis is started, generating several results, such as the
variations in the centers of the clusters over the
iterations; ANOVA, which allowed to find out which
variable contributed more to the separation of the groups
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and to classify the clusters according to their Table 2. ANOVA
performance:
e Positive mean values for most variables: high Cluster Error
performance/low risk.
e Negative average values for all or most Mean daf Mean daf
variables: low performance/high risk. Square Square
e Average values clqse to zero: average Zscore
performance/average risk. (TSV) 23752 2 0.500 91
Next, the distance matrix between the centroids of
each cluster and th.e numb(?r of clustereq cases is ﬁ:ﬁ? 22 781 D) 0.521 91
presented, as well as its graphical representation. ( )
Zscore
28.781 2 0.389 91
3 Results (PMV)
%;;‘g;’ 28.840 2 | 0388 91
3.1 Cluster Analysis
The variation history of cluster centers in each F. p-Value
iteration is shown in Table 1:
Zscore
(TSV) 47.506 <0.001
Table 1. Iteration history of the clusters
Zscore
43.701 <0.001
Iteration 1 2 3 (PREF)
Zscore
(PMV) 73.903 <0.001
1 2.095 2.005 1.929
Zscore
74.305 <0.001
2 0.385 0.047 0.125 (PPD)
F = F-statistic; df = degree of freedom.
3 0233 0.046 0.051 F-tests should only be used for descriptive purposes
because the clusters were chosen to maximize the
4 0.119 0.033 0.000 differences between cases in different clusters. The
observed significance levels are not corrected for this
and thus cannot be interpreted as testing the hypothesis
3 0.000 0.000 0.000 that the cluster averages are equal. Table 3 presents the

means for each variable responsible for forming the

According to SPSS, the minimum distance was clusters.
4.967 between the initial centers, so the algorithm Table 3. Final group centers
continues until there is no more significant variation in
the centroids of each cluster. Clusters 1 2 3

Table 2 shows the ANOVA, where the variable
highlighted in green is the one with the best
discrimination among clusters (PPD, 74.305), and the
one highlighted in red has the worst discrimination
(PREF, 43.701). Thus, the F values verified how Zscore (PREF) 1.22173 0.10102 20.95125
significant the variables were for forming clusters

according to the level of similarity, presenting their
respective contributions. Zscore (PMV) -1.52049 -0.02035 0.95625

Zscore (TSV) -1.38005 -0.01935 0.86983

Zscore (PPD) 1.72151 -0.15940 -0.68859

Through the values obtained for the centers of the
final clusters, it was possible to classify them according
to their performance level, as follows:

o Cluster 1: medium performance / medium risk.

e  (Cluster 2: low performance / high risk.

o Cluster 3: medium performance / medium risk.

The distance matrix between the centroids of the
clusters is presented in Table 4.
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Table 4. Matrix of distances between cluster centers

Cluster 1 2 3
1 2.983 4.661
2 2.983 1.770
3 4.661 1.770

Table 5 contains the number of cases in each of the
clusters formed.

Table 5. Number of cases in each cluster

Cluster 1 2 3
Number of cases 15 54 25
Total 94

The values contained in Table 3 have been
graphically represented in Figure 3 with the means of
the variables for each cluster formed.

Variables
2 Score Z(TSV)
Score Z(PREF)
Score Z(PMV)
- Score Z(PPD)
7]
]
=
©
> o+ _-_-
-1
-2 T T T
Cluster 1 Cluster 2 Cluster 3
Cluster

Fig. 3. Graphical representation of the cluster centers

All clusters presented some distinct cases, being:

o The variable PPD contributed the most to the
formation of cluster 1, referring to the level of
thermal dissatisfaction of people in this
classroom.

o The PREF variable was the most prominent in
cluster 2, showing that most men and women
had similar thermal preferences.

e The PMYV variable was in evidence in cluster 3,
that around 26.6% of the cases presented
values that resembled Fanger's model, close to
the average predicted votes.

In Figure 3, the number of cases in each cluster was

shown according to gender.

Gender

WFemale
W male

Case cluster number

Fig. 4. Number of cases in each cluster by gender

Thus, it was seen in the clusters that the number of
men and women are similar, revealing that PREF, PMV,
TSV, and PPD are similar and that there is little
difference between genders, most likely due to the
different thermal insulation of people's clothing. As for
clusters 1 and 2, men were in more significant numbers.
However, this value was not significantly higher than
that of the opposite gender, highlighting that the intra-
groups had thermal characteristics in common.

4 Discussion

Through the cluster analysis, it was possible to
classify the individuals according to Thermal Sensation
Vote (TSV), Predicted Mean Vote (PMV), Thermal
Preference Votes (PREF), and predicted percentage of
dissatisfied (PPD) in 3 groups. In this way, each case
was assigned to only one cluster, so all those with some
level of similarity belonged to the same grouping, so
there would be no possibility of being at the same time
in two or more groups.

Over five iterations, the algorithm for forming the
clusters ends when convergence of the data is achieved,
containing a minimum distance between the initial
centers of 4.967. This is the value that represents the
centroid responsible for the separation of the clusters
and their optimal solutions [35].

Another relevant detail is understanding the
student's profile and preferences in classrooms, as Teli
et al. [36] did in their research investigating the
temperature profiles in Swedish homes. The behavior of
most individuals was highlighted in the second cluster,
where thermal preference (PREF) was in evidence,
showing that in this environment, individuals had
different preferences from the reality calculated by the
PMV. Thus, it is necessary to understand the students'
demands so they can have thermal comfort in this
environment. In line with the second cluster, the PPD
was more relevant for forming the first cluster, showing
that only a portion said they were satisfied with the
environment, highlighting a critical view of their
preferences.

Regarding the performance of the clusters, cluster 2
had low performance and a high risk for separation of
the groups; in addition, the number of men and women
for all clusters were similar, revealing that PREF, PMV,
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TSV, and PPD have similarities for both genders and
dissimilarity between the clusters formed.

Cluster analysis can be applied to indoor
environments such as classrooms or outdoor areas, as
Acero et al. [37] did in their studies on outdoor thermal
comfort to obtain boundary conditions to represent
urban microclimate models. In addition, Chang et al.
[38] point out that this statistical analysis may also
investigate energy consumption related to thermal
comfort and occupant behavior. Chen et al. [39] verified
in their cluster analysis that women are more
predisposed to use adaptive strategies to reduce energy
consumption, especially in issues related to lighting.

5 Conclusion

Through cluster analysis, the cases were classified
based on their similarities in thermal sensation votes
(TSV), thermal preference (PREF), Predicted Mean
Vote (PMV), and predicted percentage of dissatisfied
(PPD), identifying homogeneity in the data. For cluster
1, 15 cases were allocated; in cluster 2, there were 54
cases, and in the last cluster, there were 25 cases. The
second cluster had the highest number of cases
allocated, approximately 57%, characterized by
intermediate values in all variables. Clusters 1 and 2
allocated the cases with extreme values, such as higher
PPD and PREEF for cluster 1 and higher PMV and TSV
for cluster 3. The difference in cases by gender in each
cluster was not statistically significant.

Among the limitations found in the research are the
number of measurements taken and the collection
period; therefore, if both had a more significant number
and a more extended period to be taken, we could further
improve the accuracy of the results and be closer to
reality. It is suggested, for future work, the performance
of discriminant analysis to bring even more
substantiation to the results. Maroco [40] emphasizes
that although cluster analysis contains a rigorous
classification, in general, it is still a technique that does
not have solid theoretical foundations; therefore,
bringing complementary analysis to estimate the
probability of errors becomes relevant to the research.
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