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Abstract. This paper investigates a comparison of structural systems of 

high rise (96m of 30 stories) buildings subjected to gravity load and wind 

load of speed 90mph. Three structural systems, Moment frame system, 

Shear wall system, and Tube-in-Tube system of identical base area and 

loadings are structurally designed, in ETABS and LIRA software. Linear 

wind response analysis was carried out as per ASCE 7-05. Parameters like 

fundamental time period, Maximum story displacement, Maximum column 

axial load and Vertical floor displacement are considered in this study. As 

per the findings, the maximum story displacement is found to be within the 

allowable limiting value. Tube-in-Tube system shows a better performance 

from the other systems for minimizing the story displacement. The modal 

time period, vertical displacement and Maximum column axial load values 

are also minimum in Tube -in-tube system. 

Key words: Tube-in-tube system, Shear wall system, Moment frame 

system, story displacement 

1 Introduction 

Nowadays construction of taller buildings is becoming more important. This is influenced 

by several factors such as increment in the price of land, decrease in the availability of free 

land, spreading of urban areas widely and so on. For such structures design based on 

stiffness is the controlling approach rather than design based on strength [1- 3]. 

 One of the most critical lateral loads, for tall buildings, is wind load which varies with 

time and height [4, 5]. The extreme vibration due to wind load is a main hindrance in 

designing and constructing high rise buildings [6, 7]. Other effects of this load are inter-

story drifting and lateral deflection., Movement of buildings caused by wind generates 

uncomfortable state to humans owing to their sensitive behavior of vibration. Accordingly, 

the drift index is limited within the range of 1/600 to 1/400 [8].  

 To minimize such effects a stable and rigid structure is needed. Therefore, as the height 

of a building is increasing it becomes crucial to choose a suitable structural system. The 

term structural system represents to a system of a structure that resists lateral loads from 

either earthquake or wind [9]. In this paper three structural systems namely the Moment 

frame system, Shear wall system, and Tube-in-Tube systems are selected for comparison. 
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1.1 Moment frame system 

This system is designed by rigid connection of vertical column and horizontal beam 

members where, Load is resisted by flexural stiffness of these members [10]. In this system, 

size of columns progressively becomes larger towards the base and this size is controlled by 

the gravity load that also increases downwards the base. Lateral forces are resisted by the 

rigid action of the frame with bending moment and shear force development at the joints [1, 

11,12]. 

1.2 Shear wall system 

Shear wall system is one of the most feasible and popular systems that resist lateral loads 

with its shear walls [13-15]. Shear walls, in walls of separate plane form, act as a cantilever 

which is vertical and fixed at the base. Similarly, the shear walls can also act as connected 

walls which are non-planar assemblages around an elevator [16]. The strength and plane 

stiffness of shear wall system are higher when compared to moment frame systems [1][12]. 

A higher stiffness could be obtained when beams are set in between to join the shear walls. 

By this action the individual cantilever action of the walls will be restrained for acting as a 

single unit [17]. 

1.3 Tube-in-Tube system 

Tube- in – tube system is a form created by an inner core within an outer framed tube 

where, portion of the lateral load is resisted by the core [12, 18]. The combined action of 

the core and framed tube aids in resisting the gravity and lateral loads [19-21]. A floor 

diaphragm that connects the core and framed tube helps in transferring the lateral loads to 

both systems. For a malicious attack with missiles or airplanes more tubes could be 

provided inside the outer tube giving extra purpose as an extra defense line [1] 

2 Purpose of Study 

The main objective of this study is to find the response of the systems in terms of modal 

time period, maximum story displacement, Maximum column axial force and Vertical story 

displacement. And the analysis is structured as: 

 To get the most effective structural system against the lateral wind load. 

 To compare the above-mentioned parameters both in LIRA and ETABS software.  

3 Methodology 

The following procedure was followed to carry the investigation: 

 Three structural systems Moment frame system, Tube-in-Tube system and Shear 

wall system were selected.  

 Models considering reinforced cement concrete were created for 30 stories tall 

building for these three systems. 

 Gravity and wind loads were taken as per ASCE 7-05.  

 Manual design of the frame members and software design of the whole structure. 

Investigation of analysis results in terms of time period, maximum story 

displacement, maximum column axial force and story vertical displacement to 

understand the response of the different systems. 
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4 Design Codes and Loadings 

Limit state design philosophy and ACI code were adopted [22, 23]. While, loadings as per 

ASCE 7-05 [8] were taken as: 

Dead load on roof 10.6 KN/m
2 
 Live load on roof 0.6 KN/m

2 
   

Dead load on mechanical floor 15.7 KN/m Live load on mechanical floor 11.9 KN/m
2
 

Dead load on office floor 1.375t/m
2
 Live load on office floor 2.5 KN/m

2
 

Facade load on perimeter beams 1.0 KN/m Wind speed 90mph 

Importance factor 1 Exposure condition B 

The 29
th

 floor is mechanical floor while others are office floors 

5 Building description and Models 

5.1 Building Description 

Plan dimension 48m*48m Number of Stories 30 

Story height 3.2 Total height of the building  96m 

Structure Utility office Office floor slab thickness    250mm 

Mechanical floor slab thickness 350mm Roof slab thickness              150mm 

Drop panel size 1.33m*1.33m Drop panel thickness            0.4m 

Shear wall of (1-5 floors)  500mm Shear walls of (6-10 floors)  450mm 

Shear walls of (11-15 floors) 400mm Shear walls of (16-20 floors) 350mm 

Shear walls of (21-25 floors) 300mm Shear walls of (21-25 floors) 250mm 

Frame spacing 8m but, in case of shear wall and Tube-in-tube systems outer frame spacing 

is taken to be 4m. Type of slab is flat slab in shear wall and Tube-in-tube systems. Shear 

wall thicknesses is considered the same in Tube-in-tube and Shear wall systems  

5.2 Building Models 

5.2.1 Moment frame system 

        

(a)       (b)         (c) 

Fig. 1. Plan view (a), 3D view of moment frame system in (b) ETABS,  (c) LIRA  
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5.2.2 Shear wall system 

         
(a)      (b)         (c) 

Fig 2. Plan view (a), 3D view of shear wall system in ETABS (b) and LIRA (c) 

5.2.3 Tube-in-Tube system 

       

(a)      (b)         (c) 

Fig 3. Plan view (a), 3D view of Tube-in-tube system in ETABS (b) and LIRA (c) 

6 Results and discussion 

6.1 Manually designed frame sections 

The following are beam and column sections designed manually according to ACI code, 

they are then applied in the software for the three systems. 

 

Table 1. Column section sizes 

                                         Column sections(m
2
) 

Columns Typical Edge Corner 

Roof columns 0.3*0.3 0.3*0.3 0.3*0.3 

Mechanical floor col. 0.45*0.45 0.3*0.3 0.3*0.3 

(26-28 floor) col. 0.75*0.75 0.45*0.45 0.35*0.35 

(21-25floors) col. 1*1 0.65*0.65 0.45*0.45 

(16-20floors) col. 1.2*1.2 0.8*0.8 0.55*0.55 

(11-15 floors) col. 1.35*1.35 0.95*0.95 0.7*0.7 

(6-10 floors) col. 1.35*1.35 0.95*0.95 0.7*0.7 

(1-5 floors) col. 1.5*1.5 1.1*1.1 0.7*0.7 
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Table 2. Beam section sizes 

Floor m
2
 

Roof 0.55*0.35 

Mech. Floor 0.7*0.45 

Office floor 0.65*0.4 

 

6.2 Modal Time Period 

The modal time period of Moment frame is higher compared to the other structural systems. 

In contrast, Tube in Tube and shear wall systems have almost the same time periods. 

 

 

Fig 4. Modal time period from LIRA 

 

Fig 5. Modal time period from ETABS 
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6.3 Maximum story displacement in mm 

 

Fig 6. Maximum story displacement in mm 

The maximum story displacement of Moment frame in the global X direction is 2.06 times 

of tube-in-tube and 2.04 times of shear wall system (LIRA results). 

6.4 Maximum column axial load at the base in Tons 

 

Fig. 7. Maximum column axial load at the base in tons 

 

The maximum typical column axial load at the base of shear wall and moment frame 

systems are greater by 2% and 18.11% respectively comparing to tube-in-tube system 

(LIRA results). 
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6.5 Maximum vertical Displacement of floors in mm 

 
Fig 8. Maximum floors’ vertical displacement in mm 

 
The floors’ vertical displacement of Tube-in-tube system is found to be smaller in 

comparison to the other two systems. The roof’s’ vertical displacement of moment frame 

and shear wall is 1.25 times greater than of tube-in-tube system (LIRA results). 

7 Conclusion 

The preliminary manually designed beam and column section sizes were used in the 

software design and no member was found to fail. Unlike Moment frame and Shear wall 

systems, Tube-in-tube system has different time periods in the global X and Y axes as a 

result of its geometrical asymmetry. Having minimum lateral drift, tube-in-tube system is 

found to be most effective structural system for lateral wind load resistance. The results in 

the maximum story displacement of the two software is almost similar, the bit difference 

might be caused from application of the wind load where in ETABS it was applied from the 

software directly. The paper recommends further study to be conducted considering 

earthquake loads. 

This paper has been supported by the RUDN University Strategic Academic Leadership Program and 

the RUDN University Scientific Projects Grant System, project № 202247-2-000. 
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