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Abstract. The article presents the results of research on modeling the 

process of mass transfer by interacting ground and surface water flows, 

taking into account the migration of moisture in the humidification zone 

using the dimensionality analysis method, as when solving the problem of 

mass transfer by interacting ground and surface water flows in the 

humidification zone, associated with the determination of the mass transfer 

coefficient, the method of dimension analysis acquires special importance. 

Based on these considerations, stochastic differential equations of changes 

in the parameters of the infiltration flow in the humidification zone are 

derived and a one-dimensional hydraulic model of convective moisture 

transfer in hydromorphic media caused by irrigation of agricultural crops is 

obtained. 

Key words: mass transfer, water-salt regime, hydraulic model, aeration 

zone, dispersed systems, groundwater, geohydrodynamicprocesses, 

hydromorphic medium. 
 

1 Introduction  
In land reclamation, many scientists and researchers have been engaged in modeling the 

water-salt regime of underground and surface waters [2,3,6,10,11,12], while these studies 

were carried out based on simplified models for individual components of the water flow. 

Models of mass transfer by interconnected flows of ground and surface water, as well as 

moisture in the humidification zone, taking into account mass transfer between various 

components of water runoff and the problems of managing changes in the state of the 

humidification zone have not been considered so far. This significantly limited the 

possibility of using joint runoff models in solving many applied tasks to assess the 

ecological and reclamation status of irrigated lands and the quality of ground and surface 

waters. 

Deterministic models of geohydrodynamic processes study the general laws of 

substance transfer (mass, heat and momentum) based on traditional representations of 

continuum mechanics. For heterophase polydisperse media, where there are random 

(stochastic) processes, in particular, changes in the size of soil-soil particles, the specified 
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description principle turns out to be somewhat incomplete. Changes in the size and shape of 

particles in hydromorphic media caused by phase (dissolution, evaporation, condensation, 

crystallization) transformations, hydrodynamic phenomena significantly deform the density 

function of particle size and time distribution, thereby having a significant impact on the 

phenomena of mass, heat and momentum transfer in heterogeneous systems. 

 

2 Materials and methods 
During the research, the methods adopted for field and field conditions, the theory of 

unsteady water filtration in soils and modeling the dynamics and direction of hydrological, 

hydrogeological and soil reclamation processes using modern technical means of 

observation and mathematical methods were used. Experimental studies of plant water 

consumption were carried out on a natural background and on a lysimeter based on 

generally accepted methods. 

 

3 Results and Discussion 
In practical applications of dispersed systems in hydromorphic media, solid particles, 

droplets and bubbles are characterized by polydispersity of the state, i.e. the particle sizes 

can vary from minimum to maximum values, although the average size is always used in 

mass heat transfer calculations. The shape of the particles that make up dispersed systems is 

generally not spherical, although the spherical shape is a special case or an idealization of 

an irregular shape. Strictly spherical in the absence of shape deformation are droplets and 

bubbles that take a spherical shape under the action of surface tension in the absence of 

external fields (gravitational, electric, etc.). Droplets and bubbles of small sizes also retain a 

spherical shape. 

Depending on the nature of the problem to be solved, different average diameters 

and spectra in size and mass should be used. It is important to note that when analyzing and 

solving problems of heat and mass transfer in the soil-soil humidification zone, it is 

desirable to use the average diameter on the surface. The state of a polydisperse system is 

determined by the particle size distribution function or the evolution of the size and time 

distribution function. Usually, in processes accompanied by physical phenomena (droplet 

evaporation, condensation, agglomeration, coagulation, etc.), i.e. accompanied by a change 

in particle size, the most effective representation of information on the state of a 

polydisperse system is a characteristic change and evolution of the function and distribution 

over residence time. In this case, the nature and form of the distribution function changes 

over time, starting from the initial distribution and ending with the limit value. In the steady 

state, which corresponds to constant particle sizes, well-known equations are used for 

continuous particle distribution functions: normal and lognormal distributions, etc., each of 

which is characterized by its own parameters. The density of the normal and lognormal 

particle size distribution is widely used in applied problems for various fields, including 

mass and heat transfer problems, they are used to construct the distribution function of fine 

and highly dispersed particles and nanoparticles. It is important to note that these types of 

distribution functions are characteristic of the steady state or constancy of the size of a 

polydisperse system. 

Stochastic differential equations of changes in the parameters of the infiltration flow 

in the humidification zone during furrow irrigation of agricultural crops. When modeling 

the process of mass transfer by interacting currents of ground and surface waters, taking 

into account the migration of moisture in the humidification zone, we use the method of 

dimensional analysis. 

The main method of similarity theory is the analysis of the dimensions of the 

physical quantities characterizing the state of the process under study, and the parameters 

that determine this state. The dimension of a physical quantity is understood as the 
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expression of the relationship between it by the physical quantities underlying the system of 

units. The basis of dimension analysis is the requirement that the basic equations expressing 

the relationship between variables and process parameters should be valid for any choice of 

units of measurement of the quantities included in them. It follows from this requirement 

that all the terms of each equation must have the same dimensions. When solving the 

problem of mass transfer by interacting currents of ground and surface waters, taking into 

account the migration of moisture in the humidification zone associated with the 

determination of the mass transfer coefficient, the method of dimensional analysis acquires 

special importance. Usually, the dimension is written symbolically in the form of a formula 

in which it is customary to denote the symbol of the unit of length L, the unit of mass M, 

the unit of time T and the unit of temperature θ. Table 1 below shows the main variables 

and their corresponding dimensions. 

 
Table 1. Variables and their dimensions 

 Variable Dimension Symbols Dimensions 

Main Mass  

Length  

Time 

Temperature 

m 

l 

t 

T 

[M] 

[L] 

[T] 

[θ] 

Mechanical Speed  

Boost 

Density  

Dynamic viscosity 

Force 

V 

g 

ρ 

η 

F 

[LT
-1

] 

[LT
-2

] 

[ML
-3

] 

[ML
-1

T
-1

] 

Thermal Thermal Conductivity 

Heat capacity 

Heat transfer coefficient 

 

λ 

c 

α 

[MLT
-2

θ
-1

] 

[LT
-2

θ
-1

] 

[MT
-3

θ
-1

] 

Diffusion Concentration 

 Diffusion coefficient 

Mass transfer coefficient 

C 

D 

Β 

[ML
-3

] 

[LT
-2

] 

[LT
-1

] 

 
Similarly, the coefficients of thermal conductivity, heat transfer and heat capacity 

can be expressed 

 , ,

 

The main content of dimension theory is the n-theorem, which is formulated as 

follows. Let there be some functional dependence between different quantities 

f(X
1
,X

2
,...X

n
)=0. Let the maximum number of these dimensional quantities with independent 

dimensions be m. Then the initial relationship between dimensional quantities expressing a 

certain physical law can be represented as a relation between (n–m) dimensionless 

quantities, each of which has the form of a power-law monomial. The number of basic units 

of measurement by which all these variables are measured is 

мскгмHTMLP 2221 //   , cмLTV /21   ,   33 / мHML , 

smTLv /212    . 
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So, let's assume that some parameter of the mass transfer process N is related to 

other parameters of the process N,A,B,C,D by dependence 

dcba DCBkADCBAfN  ),,,( (1) 

Here k, f, c, d -are unknown coefficients determined on the basis of experimental studies. 

Suppose that the process parameters N,A,B,C,D depend on the physical properties of the 

infiltration flow (viscosity, density, velocity, temperature), which in the symbols of 

dimension will be represented as 

0000 nkma
MTLN  ; 1111 nkma

MTLA  ; 2222 nkma
MTLB  ; 3333 nkma

MTLC  ; 

4444 nkma
MTLD   

Then equation (1) can be written as 
dnkmankmankmankmankma

MTLMTLMTLMTLkMTL ))()()(( 44443333222211110000  

(2) 

Comparing the degrees at the same dimensions, we get 

43210  dcbaa   

43210 dmcmbmamm  ; 43210 dkckbkakk  ; 

43210 dncnbnann   

In this equation, the number of unknown coefficients (k,a,b,c,d) is greater than the 

number of equations, and the values of the coefficients (αi,mi,ki,ni) are known according to 

the dimension of the corresponding parameters. To solve this system of equations with 

respect to a,b,c,d and taking (n-m)(n- is the number of unknown coefficients, m is the 

number of equations) the coefficients are key, we express the remaining coefficients 

through these.To solve equation (2), it is necessary to determine the mass transfer 

coefficient. Using the dimensionality method, we define an empirical expression for the 

mass transfer coefficient β[LT
-1

], assuming that the latter is a function of the characteristic 

body size r[L], with a flow rate V[LT
-1

], a flow density ρ[ML
-3

] viscosity η[MT
-1

L
-1

] and a 

coefficient diffusion of D[L
2

T
–1

]. 

Let 's define the mass transfer coefficient in the form 
cdcba

L DVkr    

Substituting the dimension values, we get 
гdcba TLLMTMLLTkLLT )()()()( 1211311    

Comparing the degrees for the corresponding dimensions, we obtain 

edcbаL 231:  edbT 1: ; dcM 0: (3) 

In this equation, the number of unknown coefficients is n=5, and the number of 

equations is m=3. The number of key parameters is n-m=2. We will take b,d as the key 

parameters and express the remaining coefficients through these coefficients. From the last 

equation (3) we have c=-d, from the second equation- e=1-b-d. Then from the first 

equation we get a=b-1. Given these values, we Given these values, we can write 
dbddbb

L DVkr  11   

Let 's write this equation in the form 
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D
Sc

D

Vr
Ре

D

r
Sh

DD

Vr
k

D

r

L

ddb

dbb

L













,,

 

By entering the criteria and, the equation for calculating the mass transfer coefficient is 

presented as 
dbSekPeSh  

Pe=ReSc, then we can write 
dbbSckPeSh   

 

Coefficients (k, b, d) for any mass transfer process can be determined using experimental 

data.  

Now, using the dimensionality method, we define an empirical formula for 

calculating the heat transfer coefficient , depending on 

the body size r[L], the flow velocity V[LT
–1

],  the density of the medium ρ[ML
–3

], the 

viscosity of the medium η[MT
–1

L]
–  

the thermal conductivity of the medium and the heat 

capacity of the flow λ[LMT
–3

θ
–1

], i.e. 
f

p

edcba CVkra  (4) 

Given the dimensions of the corresponding quantities, we can write. Comparing degrees of 

the same size, we get 
fгdcba TLMLTLMTMLLTkLMT )()()()()( 12213113113     

fedcbаL 230:   

fedbT 233:  ;  edcM 1: ; fe1:  

In this system, there are n-6 unknown coefficients and m=4 equations. Taking c 

and f as the key coefficients, we express the remaining coefficients through them. From the 

last equation we have e=1-f, from the third equation d=f-c, from the second equation -b=c, 

then from the first equation we have a=c-1. Substituting these coefficient values into the 

above equation and grouping the corresponding variables, we obtain 

fc

p

f

p

c

RеKNu

C

v

rVrV
Rе

ar
Nu

CrV
k

ar

(Pr))(

Pr,,











































 

In this expression, the coefficients k, c, f   are determined based on the experimental 

values of the measured quantities. From the modeling condition, it becomes necessary to 

determine the coefficient of resistance of solid particles. In this case, the resistance force of 

solid particles F[MLT
–2

]  depends on: particle diameter a[L],  flow velocity V[LT
–1

], density 

ρ[ML
–3

] and dynamic viscosity η[ML
–1

T
–1

]. The general expression for the resistance force 

can be written as 

dcba

pD VkdF   

Moving on to the dimensional values, we get Comparing the same degrees, we have 
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)()()( 11312   TMLMLLTkLMLT cba
 

dcbаL  31:  

dbT 2:  

dcM 1:  

Taking the coefficient d as the key, we express the remaining coefficients as 

da  2 , db  2 , dc 1 . 

Then we can write 

2

2

22

122

V
SCF

RеVkdF

Va
Rе

VkdF

dD

d

dpD

d

dddd

pD





















 

By entering a dimensionless number, we get 
4

2

pd
S


  

 

Expressing the resistance force as , we finally get 

d

DC
Re

24
 , 

)(ReRe
Re

88
22 d

d

dd

dp

D
D fA

K

Vd

F
C 














 


 

where A is some experimentally determined coefficient. As noted above, for small values of 

Re <<1, the value of A=24 and d=1,d=1, i.e. similarly, we determine the resistance force 

for a particle in a non-Newtonian fluid by putting F=f(ρ,d,k,d,V), k- is the consistency 

coefficient-the exponent. In addition to the above, we have the following dimensions: 

k=[ML
–1

T
n–2

], n=[M
0

L
0

T
0

]. Similarly to the above calculations, for the resistance force or 

resistance coefficient, we obtain 

),(Re,

2

22
nfn

k

dV
f

dV

F
C d

n

p

n

p

d
D 



















 

The theory of similarity and dimensions is a strong tool in the analysis of transfer 

processes if it is not possible to obtain analytical solutions of differential equations with 

boundary conditions. However, it should be noted that when analyzing dimensions, it is 

important to choose the right parameters on which the transfer coefficients depend.  

When deriving equation (2), it is assumed that the stochastic process under 

consideration obeys the nonlinear equation 

)()),((
)(

tGttaf
dt

tda


  

(5) 

With normal white noise, zero expectation and a given covariance matrix (delta 

function). It should be noted that the function expresses the rate of change in particle sizes 

depending on the ongoing processes of mass transfer and heat exchange. 
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 
 

)),((

)()()()(

0)(

ttaf

ttBtCov

tM









                                           (6) 

If )),(( ttaf , then it characterizes the growth of particle sizes in the processes of 

infiltration, condensation, etc. If 0)),(( ttaf , 0)),(( ttaf , then it characterizes the 

change in particle size in processes such as infiltration, evaporation, etc. If the function is 

nonlinear, then great difficulties arise in the analytical solution of equation (1). An 

important condition for using the distribution function is the normalization condition 

 



0

1)( daaP .. The solution of stochastic equations differs significantly from the solution 

of ordinary differential equations. 

The solution of ordinary differential equations is reduced to the determination of 

unknown functions at an arbitrary time according to the given initial conditions 

[5,7,8,9,13,14]. The solution of a stochastic differential equation is associated with 

determining the distribution of the values of the desired functions at an arbitrary time. The 

analytical solution (1) is allowed only for special cases and in general presents great 

difficulties related to the structure of the function and the nature of the initial distribution. 

However, in some cases, there is a possibility of an approximate solution of (1) by reducing 

the latter to a system of ordinary differential equations. In particular, if we linearize the 

function in the neighborhood of some mean 

))()((
)(

)),((
)),(()),(( tta

t

ttf
ttfttaf a

a

a
a 




 






 

(6a) 

assuming that the nature and type of the distribution density function remains constant 

throughout the entire period of its evolution, then the system of differential equations, in 

particular, for the normal distribution, which allows us to determine the change in the 

elements of variance and mean б )(2 a , will be represented as 

)),(()),((
)),(()),((

)),((
)(

)(

22
2

ttBGttG
ttfttf

dt

d

ttf
dt

ad

a

a

T

a

a

a

T

nn

a

an

a
a

a



























 (7)
 

with the specified initial value 2

0

2

0 )0(,)0(( nnaa   . Solutions (1) provide a 

condition for the constancy of the distribution function over the entire period of evolution, 

except for the maximum and average values.  

Let's assume that the distribution function does not change its character over the 

entire period of evolution and obeys the normal law 








 


2

2

2

)(
exp

2

1
),(

n

a

n

a
taP






 

(6 а) 

and the change in the coordinate is described by a linear equation 

)()( tAaad 
 

(6 в) 
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This equation describes the change in the size of capillaries, where the particle size 

decreases monotonically over time to a minimum value.  

It is required to determine the laws of variation of variance and mean and to 

construct the evolution of the distribution function.  

Then we get the equation in the form 

2

2

2

)(
)(

)(

a

aPB
aP

dt

da

at

aP






















   (7 b) 

Having determined the derivatives included in this equation from (6 a) and 

substituting them into equation (7 b) after separating the variables for variance and mean, 

we obtain asa   

BA
dt

d
a

a  2
2

2 


, 2

0
0

2 )( a
t

a t  


 

a
a A

dt

d



 , 

0
0

)( a
t

a t  


 

The solution of this system of equations with initial values gives 2

0

2

aa    

 )2exp(1
2

)exp(0 At
A

B
Ataa  

  

(8) 

 

Thus, substituting these values for the variance of the mean in (6 a), we determine 

the value of the distribution function at any given time. 

By introducing the following assumptions: a) the nature of the distribution function 

is constant; b) the number of particles per unit volume is equal to 20 a ; 
a

daaPN
0

)(  ; c) 

the stochastic diffusion coefficient is equivalent to the diffusion coefficients of fine 

particles. Integrating (7b) in the range from 0 to r, we obtain an expression representing the 

equation of convective mass transfer. 

tr
rr

N

r

N
D

t

N
,(

2
2

2
























  

(9) 

Mass transfer in three directions is found as the product of the solution of the equation for 

convective transport in the vertical direction by a certain function [12]: 

),(
2

)
2

exp(

),,,( zt
x

y

tzyxN 


   (9 а) 

We will determine the desired function from the moisture transfer equation 

2

2

zz

u

t 











 



  (10) 

Now we will conduct hydraulic modeling of convective moisture transfer in 

hydromorphic media caused by changes in the groundwater level. We proceed from the fact 

that moisture changes in hydromorphic media are related to the magnitude and are 

determined by the difference in filtration rates, and moisture transfer associated with the 

magnitude is the difference in moisture. In this regard, to describe the hydraulic parameters 

of moisture transfer in the soil space, we use the criterion of similarity to the Heat [1,4]. 
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We introduce dimensionless parameters zlz  ,  


2l
t  , where ,l -are 

characteristic dimensional values (characteristic length, which determines the average path 

of moisture and kinematic viscosity, respectively). Further, let's assume that the relationship 

between humidity and suction height is linear, and the moisture transfer coefficient is 

averaged by humidity. To determine the flow structure in the convective transfer of 

moisture in hydromorphic media, we use the criterion of similarity to the Furnace, then 

equation (10) will take the form: 

2

2

22

zlzl

u

l 











 




  (11) 

Multiplying both parts of the equation by 
u

l
, and taking into account 



ul
Re - 

the Reynolds number and 


ul
Pe  - the Peclet number, we get: 

2

21

Re

1

zPez 











 




 (12) 

Multiplying both parts of equation (12) by Pe , we get 

2

2

Pr
zz

PeT













 




  (13) 

where is the Prandtl diffusion number. 

 

4 Conclusions 
Stochastic differential equations for changing the parameters of the infiltration flow in the 

humidification zone during furrow irrigation of agricultural crops have been 

developed.When studying the process of convective transport, the Prandtl similarity 

criterion is essential. The Prandtl diffusion number characterizes the relationship between 

the velocity field and the concentration field. In this regard, the Prandtl similarity criterion 

was used to describe the specific features of the convective moisture transfer process in 

hydromorphic media. Thus, a one-dimensional hydraulic model (13) of convective moisture 

transfer in hydromorphic media caused by irrigation of agricultural crops is obtained. 
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