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Abstract. The article is devoted to the dynamic problems of studying the 
strain state of earth dams under dynamic impacts. A method is developed 
for solving wave problems to determine the stress-strain state of earth 
structures, in particular, earth dams. Based on the use of the finite 
difference method, an algorithm for solving problems and calculation 
formulas were developed that have second-order accuracy in time and 

coordinates. The advantage of the developed method is the implementation 
of complex nonlinear deformation models, taking into account structural 
changes and moisture content of soil. In the example of the Charvak dam, 
the distribution of the stress state over the cross-section of the dam under 
the action of its own weight is determined and the problem of the dynamic 
behavior of an earth dam under the influence of short-term harmonic loads 
is numerically solved. The change in intense stresses at some points of the 
earth dam over time is determined.  

1 Introduction 

It is known that damage to earth dams causes great losses, therefore, in design and 

construction, it is necessary to perform calculations for their strength and reliability. 

However, the processes that determine the pattern of operation of an earth dam have not yet 

been studied sufficiently, considering the nonlinear deformations of the dam material. The 

prediction of changes in stresses and strains occurring in earth dams under the influence of 

various loads (dead weight of soil, seismic impact) is based on the description of the 

patterns of soil strain and its strength under stress conditions [1, 2]. A significant impact on 

the stress and strain distribution in soils exerts physical and mechanical characteristics in 
the body and foundation of the dam, geometric parameters of the structure, fluctuations in 

the level of the reservoir filling, seismic impacts, etc. Numerical methods are often used to 

determine the stress-strain state of dams [3-6]. At the same time, the values of stress and 

strain indices should be determined based on the analysis of a number of parameters, 

including the results of calculations of the stress-strain state of an earth dam. Many 

scientists conduct research work on the strength of earth dams using numerical methods [8-

22].  
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2 Statement and solution to the problem 

Consider earth dams on a rigid foundation (Fig. 1). If the length of the dam is very large 

compared to its width and height, its motion can be considered plane-deformed. Under the 

influence of dynamic forces on the foundations of earth dams (Fig. 2), the particles of the 

dam medium begin to move. The equation of motion of an earth dam has the following 

form [1, 2]: 

 

g
xy

P

y

S

dt

d

yx

P

x

S

dt

d xyyyyxyxxx 





 -     ,






























 (1) 

 
where х, у are the particle velocities in x and y directions; Sxx, Sуу, xy  are the deviator 

stress components; ρ is the density of the medium; P is the pressure. 

Naturally, the total stresses are determined by the following formulas: 
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The dam deformation model is taken in the form of nonlinear equations [3, 4]: 
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The general dependence of the ultimate strength on the pressure in the generalized von 
Mises condition has the following form 
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here K and G are the moduli of volumetric compressions and shear, respectively; V=ρ0/ρ is 

the relative volume; Y0 is the cohesion; μ is the coefficient of friction; YPL is the limiting 

value of resistance to rock backfill shear,  is the functional defined by the following 

formulas: 
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It is necessary to add relations that connect the components of strain rates with mass 

velocities, and the soil continuity equation [5] to the system of equations (1)–(7): 
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Thus, the system of differential equations (1)–(9) is closed, and using initial and 

boundary conditions, it describes the complete pattern of the dynamic behavior and stress-

strain state of an earth dam. On the slopes and the crest of the dam, the conditions are 

considered stress-free. The initial conditions are taken equal to zero. 

The geometric dimensions of the earth dam are height - 168 m, top width – 12 m, 

bottom width – 664 m, the slope of the upstream face - 1:2, the slope of the downstream 
face - 1:1.9, the width of the central core - 110 and 12 m. The physical and mechanical 

parameters of an earth dam are [1, 6]: for a slope, the density is 1980 kg/m3, elasticity 

modulus - Edam = 6210 MPa, Poisson's ratio - dam = 0.3; slope strength indicators are 

(cohesion, coefficient of friction, ultimate shear strength) – Y0=µ/800, µ=0.4,   Ydam=20Y0. 

For a core, the density is 1760 kg/m3; modulus of elasticity – Ecore=3105 MPa; Poisson's 

ratio – core==0.3; slope strength indicators are (cohesion, friction coefficient, ultimate 

shear strength) – Y0=µ/1000, µ=0.3, Ycore=20Y0. 

 

Fig. 1. Cross-section of an earth dam. 
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Fig. 2. Dynamic impact. 

3 Solution method 

Let us consider the numerical solutions to the problems posed by the difference method 

using the scheme proposed by M. Wilkins [7] for a quadrangular cell. In non-stationary 

problems, one independent variable, the time t variable, is of particular importance. 

Discretization of the problem with respect to this variable means that the calculation is 
performed with discrete time steps, each of which represents the transition from the state at 

t0 to the state at t0+t. The advantage of the Wilkins scheme [7] is that in the calculations 

the time step t  is realized by an automatic choice from the stability and accuracy 
conditions, and it can change every time [7]. 

4 Numerical results 

Harmonic forces shown in Fig.1 are taken as dynamic forces. Under the action of a 

harmonic load on the foundation of an earth dam, particles in the body of the dam begin to 

move, i.e. inside the dam, the soil is deformed. Harmonic load is taken for four options, i.e. 

for different frequencies of the half-sine wave, as shown in Fig. 2: 1 - t=1.0 s, 2 - t=2.0 s. 

Boundary and initial conditions: it is assumed that the dam is not strained and is at rest 
before dynamic loading. The slopes and the crest are stress-free. 

The results of solving this problem are presented graphically. Figure 3 shows the 

change in σх , σу in the near-crest zone of the dam (at point A) under harmonic loading. In 

these figures, the 1st curve denotes the stress at point A under dynamic half-sinusoidal load, 

which has a period of 1.0 s. The 2nd curve denotes the stress at point A under dynamic 

half-sinusoidal load, which has a period of 2.0 s. Maximum values of horizontal stresses 

0.75-0.85 MPa appear at t=2-4 s, and then they decrease to 0.5 MPa at t=10 s, see Fig. 3. 

Maximum values of vertical stresses at point A appear at t=6-8 s, and then they stabilize at 
t=10 s and take values of 0.12-0.15 MPa. 
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Fig. 3. Change in stresses at point A over time 

Figure 4 shows the change in horizontal and vertical stresses at point B. In these figures, 

the 1st curve corresponds to the stress at point B under dynamic half-sinusoidal load with a 

period of 0.25 s. The 2nd curve denotes the stress at point B under dynamic half-sinusoidal 

load, which has a period of 0.5 s. The 3rd curve denotes the stress at point B under dynamic 

half-sinusoidal load with a period of 1.0 s. 
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Fig. 4. Change in stresses at point B over time. 

The 4th curved line denotes the stress at point B under dynamic half-sinusoidal load, 

with a period of 2.0 s, (Fig. 4). Maximum values of horizontal stresses 0.5-0.6 MPa, appear 

at t=0.3-2 s and then they decrease to 0.15-0.19 MPa at t=10 s (Fig. 4, a). Maximum values 

of vertical stresses at point B appear at t=0.2-0.6 s, and then they stabilize at t=10 s and take 

values of 0.05-0.14 MPa (Fig. 4,b). 
The change in horizontal and vertical stresses in the center of the dam (at point C) is 

shown in Fig. 5. Here, too, the 1st curved line denotes the stress at point C under dynamic 

half-sinusoidal load with a period of 1.0 s. The 2nd curved line denotes the stress at point C 

under dynamic half-sinusoidal load with a period of 2.0 s. Maximum values of horizontal 

stresses appear at t=0.8-2.5 s and they are 0.23–-0.27 MPa, and then the amplitude 

decreases, and at time point t=10 s, they take the values of 0.11- 0.20 MPa (Fig. 5a). 

Maximum values of vertical stresses at point C appear at t=0.3-0.8 s, then they stabilize, 

and at the time point t=10 s they reach a value of 0.21-0.25 MPa (Fig. 5,b). 
The change in horizontal and vertical stresses at the base of the center of the dam (at 

point D) is shown in Fig. 6. In these figures, the 1st curved line denotes the stress at point D 

under dynamic half-sinusoidal load with a period of 1.0 s. The 2nd curved line denotes the 

stress at point D with dynamic half-sinusoidal load, with a period of 2.0 s (Fig. 6). 

Maximum values of horizontal stresses appear after the time point t=6.0 s and they have a 

value of -0.52 MPa, and then they stabilize at t=10 s (Fig. 6,a). Maximum values of vertical 

stresses at point D appear after the time point t=6.0 s, and then they stabilize at t=10 s (Fig. 

6,b). 
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Fig. 5. Change in stresses at point C over time 

Figure 7 shows the change in stress intensity at characteristic points of the dam under 

harmonic loading. In these figures, the 1st curved line indicates the stress intensity at point 

A under dynamic half-sinusoidal load. The 2nd curve indicates the stress intensity at point 
B under dynamic half-sinusoidal load. The 3rd curve denotes the stress intensity at point C 

under dynamic half-sinusoidal load. The 4th curve denotes the stress intensity at point D 

under dynamic half-sinusoidal load. Maximum stress intensity values 2.7 MPa appear after 

1 second at point D and then the values do not change until 10 seconds,  see Fig. 7, a. 

Maximum stress intensity values 3.4 MPa appear after 1.8 seconds at point D and then the 

values do not change until 10 seconds, Fig. 7,b. 
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Fig.6. Change in stresses at point D over time 
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a) under the load of a period of 1 s.   b) under the load of a period of 2 s. 

Fig. 7. Change in stress intensity at characteristic points of the dam over time. 

5 Conclusion 

The main correlations of the problem of determining the stress-strain state of earth dams 

under dynamic influences in a plane statement are given. On the basis of the finite 

difference method, a solution technique is given with regard to the posed two-dimensional 

problem of the dynamics of deformable rigid bodies for quadrangular cells. Numerical 

solutions are obtained for the stress-strain state of an earth dam in the example of the 

Charvak dam under the impact of a harmonic load from the foundation. 
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