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Abstract. Space equipment experiences high thermal and mechanical loads 
that cause deformation of its structures, as well as elements of optical 
systems and radiation receivers, which can lead to changes in the mutual 
position of the optoelectronic device elements, disturbing its alignment, 
degrading image quality and increasing pointing errors. This paper presents 

a method of spatial geometric calibration that does not require additional 
equipment and investigates the dependence of the identification results on 
the viewing angle. The proposed methodology of optoelectronic instrument 
calibration is intended to improve efficiency, reliability and survivability of 
automated spacecrafts during their operation. 

1 Introduction 

Due to thermal and mechanical loads on optoelectronic devices (OEPs), there are 

deformations of the structure, changes in the properties of optical elements and radiation 

receivers, which can lead to changes in the mutual position of their optical system elements. 

Examples of these loads: vibrodynamic and force influences on a spacecraft in the process of 

its launch into orbit and during maneuvering; lack of gravity in orbit, causing redistribution 
of stresses and structural deformations; ionizing radiation from natural sources, affecting 

materials of optical parts; thermal loads, causing thermal deformations [1-3]. 

All space-based OEPs are repeatedly tested and calibrated on Earth under laboratory 

conditions. Testing and calibration of spacecraft orientation and navigation systems, mutual 

spatial orientation of its sensors and spacecraft are also carried out in laboratory conditions 

[4]. Evaluation of the current parameters of these systems is carried out at the stage of flight 
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design tests. For some remote sensing satellites, the estimation of current parameters of 

optoelectronic devices is realized at the stage of operation with the use of a limited set of test 

and reference objects. 

However, in real conditions there is a need for systematic evaluation: for optoelectronic 

devices - resolution, sensitivity in different spectral ranges and at different points of the field 

of view, distortions of formed images, etc.; for attitude control systems - the accuracy of 

pointing out during maneuvers, correction of orbital parameters, correction of orientation 

angles, etc. [5]. 
Methods of spatial calibration imply special observations of a set of reference stars. The 

software-algorithmic complex, when used in the spacecraft control center, can provide 

planning of observations, collection, processing and analysis of observational data, 

development of recommendations for the operation of target optoelectronic equipment and 

elements of the spacecraft positioning control system [6-8]. 

Over the time of spacecraft operation, the mutual arrangement of its modules can change, 

which inevitably leads to an increase in the pointing error. If one takes the obtained frame 

and identifies the objects that are caught in it, one can determine the coordinates of the point 
of aiming with high accuracy (depending on the resolution of the camera), and then make 

corrections during the next observation session. It is worth noting that in order to obtain 

reliable results it is necessary to determine the coordinates of the photocenters of stars in the 

image as accurately as possible. Any distortions of the useful signal will inevitably lead to 

an increase in the error of determining the coordinates of the center [9-11]. Thus, Figure 1 

demonstrates the influence of matrix sensitivity inhomogeneity on the obtained result. 

 

 

Fig. 1. Influence of "cold" and "hot" pixels on the interpreted result. 

2 Identification of stars in the frame 

In the proposed algorithm, the main method of star identification is to compare the angles 

between them, but this requires knowing the focal length of the optical system. If it is known 

from telemetry or instrument data, the task is simplified. In addition, it is recommended to 
pre-process the images to improve the quality of identification [12-21]. 

When the focal distance is not known, it is necessary to know which stars are present in 

the frame in order to identify them. To identify the stars, present in the frame, the method of 

similar triangles is used. First, it is necessary to find the photocenters of stars in the image (x, 

y), and then select the equatorial coordinates of stars from the catalog (Ra - direct ascent (α), 

Dec - declination (δ)). 
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Then you need to make two lists: the first will contain all possible triangles of stars from 

the image (list A), the second will contain triangles from the catalog (list B). It is also 

necessary to translate the equatorial coordinates of stars from the catalog into their projection 

on the focal plane (ideal coordinates): 

 

𝜉 =
𝑐𝑡𝑔(𝛿)sin⁡(𝛼−𝛼0)

sin(𝛿0)+𝑐𝑡𝑔(𝛿)cos(𝛿0)cos⁡(𝛼−𝛼0)
;       (1) 

𝜂 =
cos(𝛿0)−𝑐𝑡𝑔(𝛿) sin(𝛿0)cos⁡(𝛼−𝛼0)

sin(𝛿0)+𝑐𝑡𝑔(𝛿) cos(𝛿0)cos⁡(𝛼−𝛼0)
,       (2) 

 

where δ0, α0 are equatorial coordinates of the center of the considered area. 

After all possible triangles have been composed, it is necessary to select those of them, 

where one of the sides is greater than a certain threshold (Lpor, calculated as the number of 
pixels in the diagonal, multiplied by the coefficient k). The coefficient k is chosen from the 

consideration - the larger the field of view of the image, the smaller k is. So at angles of view 

less than 1, k = 1, and at angles ~200 k = 0.25. It is worth noting that if the image of stars 

takes from 1 to 4 pixels, then you should limit the length of the segment on the smallest side, 

and leave it so that it is at least several times larger than the diameters of the stars in pixels.  

For the triangles in list A and B, calculate the lengths of the sides (a, b, c), with c ≥ b ≥ 

a. Let us use the sign of similarity of triangles by the ratio of sides: 

 

𝑝 =
𝑏

𝑐
; ⁡𝑞 =

𝑎

𝑐
.         (3) 

 

If the difference between p and q for two triangles from lists A and B satisfies the chosen 

error, then similar vertices are compared with each other, which are opposite to the large, 

middle and small sides, respectively. Each of the three similar vertices of the triangle receives 

a vote. After all the triangles have passed the comparison procedure, the points with the most 
votes are selected and they are considered to be matched in the image and in the stellar 

catalog. 

3 Determining the focal distance 

We introduce a coordinate system: the center (0, 0) is in the center of the corner pixel of the 

frame, the coordinates of the opposite (diagonal) pixel (NX - 1, NY - 1), where NX is the 

number of pixels horizontally, NY - vertically. 

Calculate the coordinates of the center of the frame by the formulas: 
 

𝑋𝑐 =
𝑁𝑥 ⁡–⁡1

2
; ⁡𝑌𝑐 =

𝑁𝑦⁡–⁡1

2
.        (4) 

 

We take the identified stars and construct unit vectors from the equatorial coordinates of 

the stars Ra and De: 

 
𝑒𝑋 = cos𝛿 cos𝛼 ;⁡𝑒𝑌 = cos𝛿 sin𝛼 ;⁡𝑒𝑍 = sin𝛿.      (5) 

 

We find the angular distance between pairs of vectors 𝐸⃗ 𝑖 , 𝐸⃗ 𝑗 (i, j are vector numbers and 

i≠j) as the arc cosine of the scalar multiplication of vectors: 
 

𝜑𝑖𝑗 = acos(𝐸𝑖
⃗⃗  ⃗ ⋅ 𝐸𝑗

⃗⃗  ⃗).        (6) 
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Then the value of possible focal length of lens F (in pixels) is set and with some step. 

From the coordinates of the images of stars on the focal plane X and Y the vectors f optical 

center of the lens - focal plane are constructed: 

 
𝑓𝑋,𝑖 = 𝑋𝑖 − 𝑋𝐶; ⁡𝑓𝑌,𝑖 = 𝑌𝑖 − 𝑌𝐶;⁡𝑓𝑍,𝑖 = Φ.      (7) 

 

Convert vectors f to unit vectors F using normalization: 

 

𝐹𝑖
⃗⃗ = 𝑓𝑖⃗⃗ |𝑓𝑖⃗⃗ |⁄ ,         (8) 

 

where i is the number of the vector (star in the frame). The norm of the vector is equal to: 

 

|𝑓𝑖⃗⃗ | = (𝑓𝑋,𝑖
2 + 𝑓𝑌,𝑖

2 + 𝑓𝑍,𝑖
2 )

1/2
.       (9) 

 

Find the angular distance between pairs of vectors 𝐹𝑖
⃗⃗ ⋅ 𝐹𝑗⃗⃗  (i≠j): 

 

𝜓𝑖𝑗 = acos(𝐹𝑖
⃗⃗ ⋅ 𝐹𝑗⃗⃗ ).       (10) 

 

We calculate the inconsistency: 

 

𝑆2(Ф) = ∑ (𝜓𝑖𝑗 − 𝜑𝑖𝑗)
2

𝑖,𝑗;⁡𝑗>1 .       (11) 

 
The summation is performed in such a way that each pair of vectors enters the sum only 

once. The number of differences between the angles ψ and φ included in the misalignment is 

denoted by Np. We choose the value of focal distance F, at which the misalignment S2 is 

minimal. The value ∆𝑥 = √𝑆2 𝑁𝑃⁄  serves as an estimate of the error in determining the 

coordinates of the stars on the focal plane (in pixels). 
Simplifying, we assume zero distortion, i.e. the star ray passes through the optical center 

of the lens and falls on the focal plane in a straight line. The star image is formed at the point 

of intersection of the beam and the focal plane. Angular dimensions of the frame WX, WY are 

calculated according to the formulas: 

 
𝑊𝑋 = 2atan(𝑁𝑋 2Ф⁄ );⁡𝑊𝑌 = 2atan(𝑁𝑌 2Ф⁄ ).      (12) 

4 Recognizing star configurations, identifying these stars with 
the catalog, and finding potential orientation values 

In this part of the work, the Gaia catalog was used, but the use of data from other catalogs is 

admissible [22]. The following stars were selected from it and two lists were compiled: the 

first, up to 7.5m in the G band (37045 stars) - the list name is G7.5; the second, up to 13.0m 

in the G band (7 283 019 stars) - the list name is G13. 
The catalogs contain the coordinates Ra, Deс and the mG magnitude in the G band and 

additional data. In the text form, the catalogs are sorted in ascending order of mG. 

From the 1st catalog, the catalog of distances (D7.5) between pairs of stars, in which both 

stars are brighter than 7.5m in the G-band and the angular distance between the pairs d < 100 

is constructed. The catalog contains the following data: d is the distance between the pair in 

degrees; n1 is the number of the first star of the pair in the lists G7.5, G13 (numbering from 

1); n2 is the number of the second star of the pair in the lists G7.5, G13; m1 is the sidereal 

magnitude of the first star of the pair in the list G; m2 is the sidereal magnitude of the second 
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star of the pair in the list G (m2≥m1). In textual form, the catalog of distances is sorted by 

increasing d. The catalog contains 5 930 496 entries (pairs of stars). 

The input data of the stars in the frame are read. Only the data obtained directly from the 

frame are used: X, Y and Bri, and Bri is used only for the initial sorting of the list, and is not 

used in the algorithm itself. Sort the read list of stars T by decreasing Bri (the brightest stars 

are at the beginning of the list).  

From the list T we take 3 stars with numbers i0, i1, i2 (i0<i1<i2). The angles between any 

pair of these stars (d01, d02, d12) must be smaller than the maximum distance value in the 
distance catalog. We calculate unit vectors Fi for these stars by formulas (7-9), and then find 

the angle between vectors F0 and F1: 

 

𝑑01 = acos(𝐹0
⃗⃗⃗⃗ ⋅ 𝐹1

⃗⃗  ⃗).       (13) 

 

The resulting list will be called D0. The record structure of the list D1 includes only the 

numbers of stars in the lists G7.5/G13 (n0, n1). These pairs are the 1st side of possible star 

triangles in the sky corresponding to the images of stars with numbers i0, i1, i2 in the frame. 

Find the angle between vectors F0 and F2, we denote it by d02. We select from the catalog 
of distances the stars for which the condition is fulfilled: 

 
𝑑02 − 𝑁𝜎 ∙ ∆𝑥 < 𝑑 < 𝑑02 + 𝑁𝜎 ∙ ∆𝑥,      (14) 

 

where Δx is an estimate of the error in determining the coordinates of stars on the focal plane. 

The resulting list will be called D1. The record structure of the list D1 (n0, n2). These pairs 

are the 2nd side of possible star triangles in the sky corresponding to the images of stars with 

numbers i0, i1, i2 in the frame. Then we have to find the entries of the lists D1 and D2 in which 

the numbers of the first stars in the pairs coincide. We put these entries in the list D01. The 
list includes the numbers of stars from both compared lists (n0, n1, n2). 

These triples of stars are possible triangles of stars in the sky corresponding to the triangle 

of images of stars with numbers i0, i1, i2 in the frame. Check the length of its 3rd side, then 

find the angle between the vectors F1 and F2, and denote it as d12. We select from the catalog 

of distances the stars for which the condition is satisfied, taking into account the error Δx 

estimate: 

 
𝑑12 − 𝑁𝜎 ∙ ∆𝑥 < 𝑑 < 𝑑12 + 𝑁𝜎 ∙ ∆𝑥.      (15) 

 
The resulting list is called D12. Compare the lists D01 and D12. We look for elements in 

the list D01, in which numbers 2 (n1) and 3 (n2) of stars of the triangle coincide with the 

corresponding numbers (n1, n2) in the list D12, and form the list D3. The structure of the list 

D3 coincides with that of the list D01 and includes data from both compared lists (n0, n1, n2). 

These triples of stars are the possible triangles of stars in the sky corresponding to the 

triangle of star images with the numbers i0, i1, i2 in the frame, in which the lengths of all three 

sides within the errors coincide with the distances between the images of stars in the frame. 

Then it is necessary to check the identifications. If there are no entries in the D3 list, the 
identification has failed. If there is one entry, it is most likely a correct identification, but this 

identification must still be checked. 

Choose the entry from the list D3. For the stars with numbers i0, i1, read from the list G7.5 

their equatorial coordinates Ra0, Dec0 and Ra1, Dec1. Using formulas (14-15) we calculate 

the unit vectors E0 and E1. Knowing the pairs of vectors E0 E1 and F0, F1, we construct a 

rotation matrix R, which transforms the coordinate system of the focal plane to the equatorial 

coordinate system and back. From the pair of vectors E0 and E1 we construct an 
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orthonormalized basis 𝐵𝐸 = (𝐵𝐸0
⃗⃗ ⃗⃗ ⃗⃗  ⃗, ⁡𝐵𝐸1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝐵𝐸2
⃗⃗ ⃗⃗ ⃗⃗  ⃗). As a vector 𝐵𝐸0

⃗⃗ ⃗⃗ ⃗⃗  ⃗ we take vector E0, 𝐵𝐸2
⃗⃗ ⃗⃗ ⃗⃗  ⃗-unit 

vector co-directional to vector product E0×E1, - vector product BE2×BE0. 

Vectors BE are unit, mutually orthogonal and form the right triplet (𝐵𝐸0
⃗⃗ ⃗⃗ ⃗⃗  ⃗, ⁡𝐵𝐸1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝐵𝐸2
⃗⃗ ⃗⃗ ⃗⃗  ⃗). From 

these vectors we construct the basis matrix BE (3×3, the vectors go by columns of the matrix). 

Similarly, we construct an orthonormal basis BF from the pair of vectors F0 and F1. These 

vectors are also unit, mutually orthogonal, and form the right triplet (𝐵𝐹0
⃗⃗ ⃗⃗ ⃗⃗  ⃗, ⁡𝐵𝐹1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐵𝐹2
⃗⃗ ⃗⃗ ⃗⃗  ⃗), and the 

basis matrix has unit determinant equal to 1 and is orthogonal. Then the rotation matrix R 

translating the basis BE into the basis BF is defined as 𝑅 = 𝐵𝐸 ⋅ 𝐵𝐹T. After this, the "celestial" 

vector e is translated into the unit vector of the focal plane f by multiplying the matrix and 

vector (16). The inverse transition is represented in formula (17): 

 

𝑓 = 𝑅 · 𝑒 ⁡,         (16) 

𝑒 ⁡= 𝑅𝑇 · 𝑓 .         (17) 

 

Verification is done by multiplying the vector in both directions and comparing it with 

the original vector. We rotate all unit "celestial" vectors of stars Ei to the basis of the focal 

plane - we obtain vectors fi. From them we find the expected coordinates of stars XE, YE on 

the focal plane by the formulas: 

 

𝑋𝐸 = 𝑓𝑋 ·
Φ

𝑓𝑍
+ 𝑋𝐶 , 𝑌𝐸 = 𝑓𝑌 ·

Φ

𝑓𝑍
+ 𝑌𝐶 .       (18) 

 

Find differences XE, YE with X and Y and memorize. Determine the position of the center 

of the frame in the sky. The center of the frame, namely the point (XC, YC) corresponds to a 

unit vector 𝐹𝑐
⃗⃗  ⃗ = (0, 0, 1). We convert it to the equatorial basis, and then calculate its angular 

coordinates: 

 

𝐸⃗ 𝐶 = 𝑅𝑇 · 𝐹 𝐶; ⁡⁡𝑅𝑎𝐶 = atan2(𝐸𝐶,𝑌 , 𝐸𝐶,𝑋);⁡⁡𝐷𝑒𝑐𝐶 = asin(𝐸𝐶,𝑍).     (19) 

 

We calculate the angular diameter of the circle W inside which the whole frame fits: 𝑊 =

√𝑊𝑌
2 + 𝑊𝑋

2. We select all stars from the catalog G13 which lie on the celestial sphere inside 

the circle with the center pointed by the unit vector EC and with the angular diameter W. We 

denote the list by G. 

The implementation of sampling is possible in several ways (to speed up the procedure). 

It depends on the implementation of data structures and databases. Additionally, the stars 

included in the list G can be limited in magnitude by 𝑚𝐺 < 𝐺𝑚𝑎𝑥. In this work, we used for 

wide-field lenses and for narrow-field lenses. 
For stars from the list G, we do the following: we calculate the unit vectors E by formulas 

(5) using Ra and De values, convert E vectors to unit vectors F in the focal plane coordinate 

system using R matrix, and calculate the expected X, Y coordinates of stars from the list G 

on the focal plane by formulas (18-19). 

We exclude from the list G the stars which go beyond the frame boundaries, i.e. for which 

at least one of the following conditions is fulfilled: X < 0, X > NX, Y < 0, Y > NY. Then we 

calculate the distances on the focal plane between the stars in the frame (list T) and from the 

Gaia catalog (list G): 
 

𝑅𝑡𝑔 = √(𝑋𝑡 − 𝑋𝑔)
2
+ (𝑌𝑡 − 𝑌𝑔)

2
,      (20) 

 

where t is the number of a star from the list T, g is the number of a star from the list G. 
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Stars from lists T and G are considered to be identified if 𝑅𝑡𝑔 < ∆𝑅. The threshold ∆𝑅 can 

be assumed to be equal to the error of 𝑁𝛿⁡∆x. We can circumscribe a circle with a radius ∆𝑅 

around each star in one list and count how many stars from the other list fall inside it. Three 

situations are possible: 1) no stars of the other list fall inside the circle - the star is not 

identified; 2) 1 star of the other list - unambiguous identification; 3) several stars of the other 

list - ambiguous (multiple) identification. Then we can calculate the following values: 

Taking as the main list T: T0 is the number of unidentified stars in list T; T1 is the number 
of uniquely identified stars in list T; T2 is the number of repeatedly identified stars in list T; 

T0+T1+T2 = N(T), here N(T) is the number of stars in list T; 

Taking list G as the main one: G0 is the number of unidentified stars in list G; G1 is the 

number of uniquely identified stars in list G; G2 is the number of multiply identified stars in 

list G; N(G) = G0 + G1 + G2 is the total number of stars in list G; 

GT value: the number of pairs of stars from the lists T and G for which Rtg < ∆R. This 

number is symmetric with respect to both lists and can exceed the number of stars in the 

shorter one. 
The criterion for correct identification can be considered if N(T) < N(G) and T1 + T2 > 

50% of N(T). Similarly, if N(G) < N(T) and G1 + G2 > 50% N(G), the identification is correct. 

We can also look for the largest value of T1 + T2 when N(T) < N(G) or the largest value of 

G1 + G2 when N(G) < N(T). 

At the stage of testing it was found out that the best performance of the algorithm is at NϬ 

< 5. On frames with field of view less than two degrees, it is possible to identify from 80% 

to 95% of objects, and with increasing angle of view the influence of geometric distortions 

becomes critically high. For example, at angles of view of ~30 degrees it is possible to 
identify stars that are only in the central region, which is 10%-30% of the total number of 

stars. 

5 Conclusions 

Since the destabilizing effects of the space environment cause the optoelectronic instruments 

to change their characteristics, there is a need for their periodic calibration. In the present 

work, the methods of calibration are considered, which do not require installation of 

additional equipment, to work with the frames obtained onboard the spacecraft. Algorithms 
for spatial sensitivity calibration of spacecraft matrix and algorithms for identification of 

objects in the image are presented. As a result of testing on test frames with field of view up 

to two degrees, the identification algorithm recognized up to 95% of objects, which is quite 

a satisfactory result. Also, studies have found that increasing the viewing angle has a strong 

impact on the quality of the identification during calibration. 
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