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Abstract. This paper considers a mathematical model of the stress-strain 
state of a circular cylindrical shell made of titanium alloy VT1-0, operating 
in an aggressive hydrogen-containing environment. The shell is under the 
action of an internal evenly distributed pressure. To formulate the problem 
and carry out calculations, a model with triple nonlinearity is used, 

formulated within the approach associated with normalized stress spaces. 
The resulting algorithm for solving the problem of studying the effect of an 
aggressive medium on titanium alloy shells effectively takes into account 
the substantially nonlinear change in the parameters of the stress-strain state 
depending on the time factor. In the study, a system of nonlinear resolving 
equations for calculating the shell was formulated, results were obtained for 
the key parameters of the effect of a hydrogen medium on the stress-strain 
state of a cylindrical shell, taking into account embrittlement.  

1 Introduction 

Titanium alloys, initially not showing sensitivity to the type of stress state, in the process of 
saturation with hydrogen exhibit an induced dependence of deformation and strength 

characteristics on the type of stress state with inhomogeneity along the directions of the 

gradient effect of the medium. The effect of induced and time-varying resistivity must be 

taken into account when calculating structural elements made of titanium alloys operating in 

an aggressive hydrogen-containing environment. 
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In works [1 – 3] Ovchinnikov I.G. is recommended to present a model of a structure 

interacting with an aggressive environment in the form of a combination of the following 

elements: a model of a structural element, a model of a material, a model of the effect of the 

environment and a limiting state. Using this approach, here we study the stress-strain state of 

a circular cylindrical shell made of VT1-0 titanium alloy, taking into account hydrogen 

embrittlement. 

Earlier, in a number of studies it was proposed to apply the theory of structural parameters 

of Rabotnov Yu.N. [4, 5], taking into account the physicochemical effects on the surface and 

in the volume of the deformable material. With regard to the problem under consideration, 

this theory has a number of drawbacks, in particular, it does not take into account the triple 

nonlinearity and the effect of induced differential resistance. Therefore, in this work, it was 
proposed to use a refined nonlinear mathematical model to solve the problem of the effect of 

an aggressive hydrogen-containing medium on the deformation processes of a cylindrical 

shell loaded from the inside by a uniformly distributed pressure, as well as by a medium 

acting on the inner surface of the shell. 

2 Theoretical part  

Consider the equilibrium of a thin-walled circular cylindrical shell made of VT1-0 titanium 

alloy, loaded with internal pressure increasing to 5 MPa, rigidly clamped along the ends of 

the cylinder. The shell length is 4 m, the radius is 0.6 m, and the thickness is 0.05 m. In this 

problem, the Lamé parameters and the main curvatures have values: 

 

А = 1;   В = R;   k1 = 0;   k2 = R−1        (1) 
 

where 𝑅 – radius of the middle surface of the shell. 

The position of an arbitrary point of the middle surface of a cylindrical shell is determined 

by Gaussian coordinates 𝛼1 and 𝛼2, taking into account: 𝑢 – axial, 𝜗 – district, 𝑤 – radial 

displacements (deflections) under the influence of a transverse load 𝑞, according to the figure 

1. 

 

Fig. 1. Statement of the problem. 

We write the kinetic potential of deformations in the form [6, 7]:  

 

𝑊1 = (𝐴𝑒(𝜆) + 𝐵𝑒(𝜆)𝜉)𝜎2 + (𝐶𝑒(𝜆) + 𝐷𝑒(𝜆)𝜉 + 𝐸𝑒(𝜆)𝜂𝐶𝑜𝑠3𝜙)𝜏2 + 

+[(𝐴𝑝(𝜆) + 𝐵𝑝(𝜆)𝜉)𝜎2 + (𝐶𝑝(𝜆) + 𝐷𝑝(𝜆)𝜉 + 𝐸𝑝(𝜆)𝜂𝐶𝑜𝑠3𝜙)𝜏2]𝑛 ,   (2) 

 

where 𝐴𝑒(𝜆), 𝐵𝑒(𝜆), 𝐴𝑝(𝜆), 𝐵𝑝(𝜆), – are functions of the quasilinear and nonlinear parts of 

the kinetic potential, depending on the hydrogen concentration and describing the mechanical 
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properties of the alloy, which are determined by interpolating the coefficients at a fixed level 

of hydrogen saturation 𝜆 (𝜆 – percentage of hydrogen content in the medium); 𝜎 = 𝜎𝑖𝑗𝛿𝑖𝑗/3 

– medium or normal octahedral stress; 𝜏 = (𝑆𝑖𝑗𝑆𝑖𝑗/3)1/2 – tangential octahedral stress; 𝛿𝑖𝑗 – 

Kronecker symbol; 𝑆𝑖𝑗 = 𝜎𝑖𝑗 − 𝛿𝑖𝑗𝜎 – stress deviator (𝑖,  𝑗 = 1,  2,  3); 𝜉 = 𝑐𝑜𝑠 𝜓 = 𝜎/𝑆0 – 

normal octahedral normalized stress; 𝜂 = 𝑠𝑖𝑛 𝜓 = 𝜏/𝑆0 – tangential octahedral normalized 

stress; 𝑐𝑜𝑠 3 𝜙 = √2 𝑑𝑒𝑡( 𝑆𝑖𝑗)/𝜏3 – phase invariant; 𝑆0 = √𝜎2 + 𝜏2 – the norm of the vector 

space associated with the octahedral area or the modulus of the total stress vector on it. 

For titanium alloy VT1-0 material functions can be defined as follows [6, 7]: 

 

𝑉𝑒𝑘(𝜆) = 𝑒0𝑘 + 𝑒1𝑘 ⋅ 𝜆 + 𝑒2𝑘 ⋅ 𝜆2;   
𝑉𝑝𝑘(𝜆) = 𝑝0𝑘 + 𝑝1𝑘 ⋅ (𝑝2𝑘)𝜆; 

𝐴𝑒(𝜆) = 𝑉𝑒1(𝜆); 𝐵𝑒(𝜆) = 𝑉𝑒3(𝜆); 𝐶𝑒(𝜆) = 𝑉𝑒2(𝜆); 𝐷𝑒(𝜆) = 𝑉𝑒4(𝜆); (3) 

 𝐸𝑒(𝜆) = 𝑉𝑒5(𝜆); 𝐴𝑝(𝜆) = 𝑉𝑝1(𝜆); 𝐵𝑝(𝜆) = 𝑉𝑝3(𝜆); 

 𝐶𝑝(𝜆) = 𝑉𝑝2(𝜆); 𝐷𝑝(𝜆) = 𝑉𝑝4(𝜆); 𝐸𝑝(𝜆) = 𝑉𝑝5(𝜆), 
 

where eik , pik – polynomial coefficients i = 0…2; k = 1...5. 

The numerical values of these parameters at a fixed value of the degree of saturation of 

hydrogen are presented in the table 1. 

Table 1. Numerical values. 

Constants 
Titanium alloy VT1-0 

λ= 0% λ=0,01% λ= 0,03% 

Ae, МPа-1 4,775·10-6 4,327·10-6 4,771·10-6 

Ce, МPа-1 1,750·10-5 1,586·10-5 1,749·10-5 

Be, МPа-1 0 2,008·10-7 1,516·10-9 

De, МPа-1 0 -2,151·10-6 -1,625·10-8 

Ee, МPа-1 0 -8,318·10-7 -6,281·10-9 

Ap, МPа(1-2n) n 4,448·10-6 5,685·10-6 6,487·10-6 

Cp, МPа(1-2n) n 1,631·10-5 2,084·10-5 2,378·10-5 

Bp, МPа(1-2n) n 0 -5,556·10-7 -9,155·10-7 

Dp, МPа(1-2n) n 0 5,953·10-6 9,809·10-6 

Ep, МPа(1-2n) n 0 2,301·10-6 3,791·10-6 

 

The relationship between stresses and strains can be obtained by applying to the strain 

potential (2), according to [8, 9], Castigliano's formulas: 
 

𝛾𝑖𝑗 =
𝜕𝑊1

𝜕𝜏𝑖𝑗
;   е𝑘𝑘 =

𝜕𝑊1

𝜕𝜎𝑘𝑘
;  (𝑖, 𝑗, 𝑘 = 1,2,3, 𝑖 ≠ 𝑗). (4) 

 

In accordance with Kirchhoff's hypotheses for cylindrical shells [9] in conditions of large 

deflections, we obtain the following geometric relations: 

a) deformation components in the median surface: 

 

𝜀1 = 𝑢,1+ 0,5𝜃1
2

𝜀2 = 𝜗,2+ 𝑘2𝑤 + 0,5𝜃2
2

𝛾12 = 𝜗,1+ 𝑢,2+ 𝜃1𝜃2

    (5) 

 

where 𝜀1, 𝜀2 – axial relative deformations in the middle surface; 𝛾12 – shear deformations in 

this surface; 𝑢 – axial displacements along the generating surface; 𝜗 – circumferential 

displacements; 𝑤 – radial displacements under the load 𝑞; 𝜃1, 𝜃2 – the angles of rotation of 

the normal to the middle surface, calculated as follows: 𝜃1 = −𝑤,1 ;   𝜃2 = −𝑤,2+ 𝑘2𝜗 
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b) the component of the bending deformation of the middle surface depends on the 

displacements as follows: 

 

𝜒1 = −𝑤,11 ;   𝜒2 = −𝑤,22 ;   𝜒12 = −𝑤,12 = −𝑤,21, (6) 

 

where χ1, χ2 – curvatures, χ12 – torsion. 

The values of deformations at an arbitrary point of the shell, spaced at a distance α3 from the 

middle surface, are presented as the sum of the deformations of the middle surface and 

bending deformations: 
 

𝑒11 = 𝜀1 + 𝛼3𝜒1; 𝑒22 = 𝜀2 + 𝛼3𝜒2; 𝛾12 = 𝛾 + 2𝛼3𝜒12.,  (7) 

 

where α3 – is coordinate along the thickness of the shell, measured from the middle surface. 

Due to the axial symmetry of the problem and taking into account the fact that the shell 

is under uniformly distributed internal pressure 𝑞, geometric relations are simplified and 

takes the form: 

 

𝜀1 = 𝑢,1+ 0,5(𝑤,11 )2;  𝜀2 = 𝑘2𝑤; 𝜒1 = −𝑤,11 ;  𝑒11 = 𝜀1 + 𝛼3𝜒1;  𝑒22 = 𝜀2.  (8) 

 

Applying Castigliano's formulas (4) to the strain potential W1 (2), the dependence of 

deformations on stresses is obtained in the following form: 

 

{
𝑒11

𝑒22
} = [𝐴] {

𝜎11

𝜎22
} ;   [𝐴] = [

𝐴11(𝜆) 𝐴12(𝜆)
𝐴21(𝜆) 𝐴22(𝜆)

].   (9) 

 

Inverting the relations (9), the correlation of stresses from deformations is obtained: 

 

{
𝜎11

𝜎22
} = [𝐵] {

𝑒11

𝑒22
} ;   [𝐵] = [

𝐵11(𝜆) 𝐵12(𝜆)
𝐵21(𝜆) 𝐵22(𝜆)

],   (10) 

 

where [B] = [A]−1. Here А11, А12, – components of the symmetric compliance matrix [A], 

which are functions of the degree of gas saturation 𝜆. These components are defined as 

follows: 

 

𝐴11(𝜆) = {2[𝑅1(𝜆) + 2𝑅3(𝜆)]/3 + 𝑅2(𝜆)𝜉(3 − 2𝜉2)/3 + 𝑅4(𝜆)[𝜉(2 − 𝜂2)/3 + 

+4(𝜎11 − 2𝜎22)/9𝑆0] + 𝑅5(𝜆)[𝜂𝐶𝑜𝑠3𝜙(1 + 𝜉2) + 2√2𝜉 − 2𝐶𝑜𝑠3𝜙 − √2𝜎22/𝑆0]}/3; 
𝐴12(𝜆) = {2[𝑅1(𝜆) − 𝑅3(𝜆)]/3 + [𝑅2(𝜆) + 𝑅4(𝜆)/3]𝜉 + 𝑅5(𝜆)[𝐶𝑜𝑠3𝜙(1 − 𝜂) −

√2𝜉]}/3; 𝐴12(𝜆) = 𝐴21(𝜆); 𝐴22(𝜆) = {2[𝑅1(𝜆) + 2𝑅3(𝜆)]/3 + 𝑅2(𝜆)𝜉(3 − 2𝜉2)/3 +

𝑅4(𝜆)[𝜉(2 − 𝜂2) + +4(𝜎22 − 2𝜎11)/9𝑆0] + 𝑅5(𝜆)[𝜂𝐶𝑜𝑠3𝜙(1 + 𝜉2) + 2√2𝜉 −

2𝐶𝑜𝑠3𝜙 − √2𝜎22/𝑆0]}/3; 𝑅𝑘(𝜆) = 𝐿𝑒𝑘(𝜆) + 𝑛[(𝐴𝑝(𝜆) + 𝐵𝑝(𝜆)𝜉)𝜎2 + (𝐶𝑝(𝜆) +

𝐷𝑝(𝜆)𝜉 + 𝐸𝑝(𝜆)𝜂 𝑐𝑜𝑠 3 𝜙)𝜏2]𝑛−1𝐿𝑝𝑘(𝜆); 𝐿𝑚1(𝜆) = 𝐴𝑚(𝜆); 𝐿𝑚2(𝜆) = 𝐵𝑚(𝜆); 𝐿𝑚3(𝜆) =

𝐶𝑚(𝜆); 𝐿𝑚4(𝜆) = 𝐷𝑚(𝜆); 𝐿𝑚5(𝜆) = 𝐸𝑚(𝜆); 𝑚 = 𝑒, 𝑝; 𝑘 = 1. . .5. 
 

By integrating stresses (10) over the thickness, it is possible to determine the forces and 

moments using standard formulas: 

 

𝑁1 = ∫ 𝜎11𝑑𝛼3
ℎ/2

−ℎ/2
;  𝑁2 = ∫ 𝜎22𝑑𝛼3

ℎ/2

−ℎ/2
;     (11) 

 

𝑀1 = ∫ 𝜎11𝛼3𝑑𝛼3
ℎ/2

−ℎ/2
;    𝑀2 = ∫ 𝜎22𝛼3𝑑𝛼3

ℎ/2

−ℎ/2
;     (12) 

E3S Web of Conferences 431, 06007 (2023)

ITSE-2023
https://doi.org/10.1051/e3sconf/202343106007

4



 

Having described the force coefficients by deformations, the following expressions can 

be obtained: 

 

𝑁1 = 𝐾11(𝜆)𝜀1 + 𝐾12(𝜆)𝜀2 + 𝑃11(𝜆)𝜒1; 𝑁2 = 𝐾12(𝜆)𝜀1 + 𝐾22(𝜆)𝜀2 + 𝑃21(𝜆)𝜒1;  (13) 

 

𝑀1 = 𝑃11(𝜆)𝜀1 + 𝑃12(𝜆)𝜀2 + 𝐷11(𝜆)𝜒1; 𝑀2 = 𝑃12(𝜆)𝜀1 + 𝑃22(𝜆)𝜀2 + 𝐷21(𝜆)𝜒1,   (14) 

 

where: 

 

𝐾𝑖𝑗 = ∫ 𝐵𝑖𝑗(𝜆)𝑑𝛼3; 
ℎ/2

−ℎ/2
 𝑃𝑖𝑗 = ∫ 𝐵𝑖𝑗(𝜆)𝛼3𝑑𝛼3; 

ℎ/2

−ℎ/2
 𝐷𝑖𝑗 = ∫ 𝐵𝑖𝑗(𝜆)𝛼3

2𝑑𝛼3. 
ℎ/2

−ℎ/2
  (15) 

 

Due to the presence of triple nonlinearity in the problem, the resolving equations can be 

written in linearized form using the two-step method of sequential perturbations of the 

parameters of V.V. Petrov [10 – 12]. Physical dependencies in linearized form will be 

presented in the following form: 

 

𝛿𝑒11 =
𝜕𝑒11

𝜕𝜎11
𝛿𝜎11 +

𝜕𝑒11

𝜕𝜎22
𝛿𝜎22;  𝛿𝑒22 =

𝜕𝑒22

𝜕𝜎11
𝛿𝜎11 +

𝜕𝑒22

𝜕𝜎22
𝛿𝜎22;  (16) 

 

Inverting relations (16), it is possible to obtain the relationship between stresses and 

deformations in increments: 

 

𝛿𝜎11 = В11(𝜆)𝛿𝑒11 + В12(𝜆)𝛿𝑒22;  𝛿𝜎22 = В21(𝜆)𝛿𝑒11 + В22(𝜆)𝛿𝑒22, 
 

where 𝐵11(𝜆) =
𝛥22

𝛥
 ; 𝐵12(𝜆) = 𝐵21(𝜆) = −

𝛥21

𝛥
= −

𝛥12

𝛥
 ; B22(λ) =

Δ11

Δ
 ;  Δ11 =

∂e11

∂σ11
 ; 

Δ22 =
∂e22

∂σ22
; Δ12 = Δ21 =

∂e11

∂σ22
=

∂e22

∂σ11
; Δ = Δ11Δ22 − Δ12Δ21; 𝛿𝜀1 = 𝛿𝑢,1+ 𝑤,1 𝛿𝑤,1 ; 

𝛿𝜀2 = 𝑘2𝛿𝑤;    𝛿𝜒1 = −𝛿𝑤,11 ;  𝛿𝑒11 = 𝛿𝑢,1+ 𝑤,1 𝛿𝑤,1− 𝛼3𝛿𝑤,11 ;   𝛿𝑒22 = 𝑘2𝛿𝑤 
The problem is considered, in which the process of the impact of an aggressive external 

hydrogen medium on the shell is completed. Consequently, the concentration distribution of 

a hydrogen-containing medium in a solid can be considered steady and expressions (16) will 

not contain increments in value 𝜆 [13]. This is necessary when hydrogen saturation is 
accompanied by an increase in the load and, as a consequence, an increase in tensile stresses. 

The equations for the connection of forces with deformations of the middle surface in 

increments are transformed to the form: 

 

𝛿𝑁1 = 𝐾11(𝜆)𝛿𝜀1 + 𝐾12(𝜆)𝛿𝜀2 + 𝑃11(𝜆)𝛿𝜒1;    
𝛿𝑁2 = 𝐾12(𝜆)𝛿𝜀1 + 𝐾22(𝜆)𝛿𝜀2 + 𝑃21(𝜆)𝛿𝜒1; (17) 

 

𝛿𝑀1 = 𝑃11(𝜆)𝛿𝜀1 + 𝑃12(𝜆)𝛿𝜀2 + 𝐷11(𝜆)𝛿𝜒1; 
𝛿𝑀2 = 𝑃12(𝜆)𝛿𝜀1 + 𝑃22(𝜆)𝛿𝜀2 + 𝐷21(𝜆)𝛿𝜒1, (18) 

 

The axial symmetry of the problem under consideration obviously makes it possible to 

simplify the equilibrium equations in increments, which in this case can be written as: 

 

𝛿𝑁1,1 = 0; 𝛿𝑀1,1− 𝛿𝑄1 + 𝑤,1 𝛿𝑁1 + 𝑁1𝛿𝑤,1 = 0; 𝛿𝑄1,1− 𝑘2𝛿𝑁2 + 𝛿𝑞 = 0 (19) 

 

Due to the axisymmetricity of the task, there is no horizontal force in the cylindrical shell if 

it is not applied at the boundaries, therefore, 𝑁1 = 0. From here we have 𝛿𝑄1 = 𝛿𝑀1,1 and 

as a result, we come to two equilibrium equations. Integrating expressions (17) for stresses 
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over the thickness of the shell according to formulas (11), (12) and substituting the result into 

the equilibrium equations, we obtain a system of two differential resolving equations in 

linearized form:  

 

𝐾11(𝜆),1 (𝛿𝑢,1+ 𝑤,1 𝛿𝑤,1 ) + 𝐾11(𝜆)(𝛿𝑢,11+ 𝑤,11 𝛿𝑤,1+ 𝑤,1 𝛿𝑤,11 ) + 𝐾12(𝜆),1 𝑘2𝛿𝑤 +
𝐾12(𝜆)𝑘2𝛿𝑤,1− 𝑃11(𝜆),1 𝛿𝑤,11− 𝑃11(𝜆)𝛿𝑤,111 = 0,  (20) 

 

𝑃11(𝜆),11 (𝛿𝑢,1+ 𝑤,1 𝛿𝑤,1 ) + 2𝑃11(𝜆),1 (𝛿𝑢,11+ 𝑤,11 𝛿𝑤,1+ 𝑤,1 𝛿𝑤,11 ) + 

+𝑃11(𝜆)(𝛿𝑢,111+ 𝑤,111 𝛿𝑤,1+ 2𝑤,11 𝛿𝑤,11+ 𝑤,1 𝛿𝑤,111 ) + 𝑃12(𝜆),11 𝑘2𝛿𝑤 +
2𝑃12(𝜆),1 𝑘2𝛿𝑤,1+ 𝑃12𝑘2𝛿𝑤,11− 𝐷11(𝜆),11 𝛿𝑤,11− 2𝐷11(𝜆),1 𝛿𝑤,111− 𝐷11(𝜆)𝛿𝑤,1111−

−𝑘2[𝐾12(𝜆)(𝛿𝑢,1+ 𝑤,1 𝛿𝑤,1 ) + 𝐾22(𝜆)𝑘2𝛿𝑤 − 𝑃12(𝜆)𝛿𝑤,11 ] + 𝛿𝑞 = 0. (21) 

 

The resulting gradient system of equations (20-21) is supplemented with boundary 

conditions in increments, in particular, the conditions for pinching the cylinder along the ends 

(considering the axial symmetry of the problem): 

- at the end of the cylinder with the coordinate L=0 м:𝛿𝑤 = 0; 𝛿𝑤,1 = 0, 𝛿𝑢 = 0; 
- at the end of the cylinder with the coordinate L=4 м: 𝛿𝑤 = 0; 𝛿𝑤,1 = 0, 𝛿𝑢 = 0. 
Chemical adsorption is characterized by the decomposition of hydrogen into atoms, 

which then penetrate into the thickness of the material. [2]. In accordance with the 

experiments, the results of which are given in [14], it was concluded that for small differences 

in the hydrogen concentration in the medium, it is possible to apply Fick's first law, which 

states that the amount of substance penetrating through the cross section perpendicular to the 

direction of diffusion is strictly proportional to the following quantities: the concentration 

gradient of the substance in this section, the cross-sectional area and the time of the diffusion 

process: 

 

𝐽 = −𝐷𝑔𝑟𝑎𝑑(𝜆) = −𝐷
𝜕𝜆

𝜕𝛼3
,   (22) 

 

where D – diffusion constant, 𝛼3 – coordinate in the direction of diffusion. 

In the problem under consideration, the physically active medium is in contact with the shell 

only along the upper or lower surface, which leads to the one-dimensionality of the diffusion 

process. For titanium alloys, the concentration does not affect the diffusion coefficient; 

therefore, the second law [15] follows from Fick's first law (22) in the form: 

 
𝜕𝜆(𝛼3,𝑡)

𝜕𝑡
= 𝐷

𝜕2𝜆(𝛼3,𝑡)

𝜕𝛼3
2 ,  (23) 

 

where 𝑡 – current time. 

As can be seen from expression (23), the rate of the diffusion process in time depends 

only on the constant D. For one-sided diffusion, the solution to equation (23) is known and 

has the form: 

 

𝜆(𝛼3, 𝑡) = 𝜆1 + (𝜆2 − 𝜆1)𝛼3/ℎ + (2/𝜋) ∑ 𝑠𝑖𝑛( 𝑖 ⋅ 𝜋 ⋅ 𝛼3/ℎ) 𝑒𝑥𝑝( −∞
𝑖=1

𝐹0𝜋2𝑖2) × [𝜆2 𝑐𝑜𝑠( 𝑖 ⋅ 𝜋) − 𝜆1]/𝑖,    (24) 

 

where 𝐹0 = 𝐷𝑡/ℎ2
 – Fourier number; i – number of members; 𝜆1 and 𝜆2 – edge values of the 

concentration of the medium on the opposite surfaces of the shell; h – thickness of shell. 

The boundary conditions are presented as follows under the influence of the medium from 

the side of application of the transverse force load: 
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𝜆(−ℎ/2,  𝑡) = 𝜆∞ = 𝜆1,   𝜆(+ℎ/2,  𝑡) = 0 = 𝜆2,  (25) 

 

where 𝜆∞ – equilibrium concentration of a hydrogen-containing medium. 

The initial conditions take the form: 

 

𝜆(𝑧,  0) = 0  (26) 

3 Solution of the model problem 

The calculations were carried out using specially developed computational procedures built 

using the universal mathematical packages Maple and MATLAB similar to [16]. The figures 

below show the results of calculating a cylindrical shell operating in an aggressive hydrogen 

environment at different concentrations from 0 to 0.08%, using the model proposed by the 

authors. 

4 Results and its discussion 

As a result of solving the problem, it was reliably established that the effect of hydrogen leads 

to a significant change in the mechanism of behavior of the material and, consequently, to a 

significant change in the parameters characterizing the stress state in the shell, and therefore, 

in comparison with the initial state without exposure to a hydrogen-containing medium, in 
compressed stresses change by up to 10% in fibers, and up to 85% in stretched fibers. This 

approach uses a rather flexible mechanism for taking into account a variety of stress states 

and demonstrates a high accuracy of agreement between the results obtained and 

experimental data on the deformation of a wide range of materials under complex types of 

stress states. Initially, taking into account the influence of the type of stress state was most 

effectively applied in works [8, 9], on the basis of which a model was developed for 

accounting for induced differential resistance, since for most materials even the initial 

differential resistance is taken into account with high accuracy, therefore this mechanism is 

also applicable for induced differential resistance, which is shown in papers [8, 9]. 

As a practical applicability of the data obtained, we give an example of the operation of 

a heat exchanger. 
For ground tests, the methods described in the study [9, 19] are suitable. There are three 

cooling methods: air jet cooling, water jet cooling and spray cooling. For jet cooling at the 

inlet and outlet of the jet field, the pressure boundary conditions are assumed. The input 

pressure fluctuates from 0.1 MPa to 1.0 MPa. Ambient atmospheric pressure is standard 

atmospheric pressure. The relative pressure at the outlet is 0 Pa, and the ambient temperature 

- 25°C. For spray cooling, the pressure boundary conditions are adopted at the inlet and outlet 

of the nozzle. The boundary conditions at the nozzle inlet consist of an air inlet and a water 

inlet. The water pressure ranges from 0.1MPa to 1.0MPa, and the air pressure is the same as 

the water pressure. The ambient atmospheric pressure is the standard atmospheric pressure, 

the outlet relative pressure is 0 Pa, and the ambient temperature is 25°C. 

Therefore, for a security system in zero gravity, liquid cooling is more rational. 

Heat exchangers are the main components of waste heat recovery and are used to 
exchange heat between fluid circuits. Heat exchangers are modeled as counterflow heat 

exchangers using the NTU 𝜀 method. Using the heat capacity of both fluids, the maximum 

theoretical rate of heat transfer between the fluids is determined [20], 

 

𝑄𝑚𝑎𝑥 =𝐶𝑚𝑖𝑛 ⋅ (𝑇𝑚𝑖𝑛 − 𝑇𝑚𝑎𝑥)    (27) 
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where, 𝐶𝑚𝑖𝑛 = 𝑚𝑚𝑖𝑛 ⋅ 𝑐𝑝,𝑚𝑖𝑛, where 𝑄𝑚𝑎𝑥 - maximum possible rate of heat transfer between two 

fluids [Вт], 𝐶𝑚𝑖𝑛 - the smallest heat capacity of two liquids [Wt/°C]. 𝑇𝑚𝑖𝑛 - cold fluid inlet 

[°C], а 𝑇𝑚𝑎𝑥 – hot liquid inlet [°C]. 𝑐𝑝 - mass flow rate of the liquid with the lowest heat 

capacity [kg/s], а 𝑐𝑝, - specific heat capacity of the liquid with the lowest heat capacity [G/(kg 

°C)]. For modeling, it is assumed that the specific heat capacity of each liquid is constant 

depending on the temperature. 

The physical properties and geometry of this problem are described by Singh, Jain and 

Rizwan-Uddin [21], where there is also an analytical solution to this problem. The inner 
surface of the sphere always has zero temperature. The outer hemisphere with a positive value 

of y has a non-uniform heat flux. 

5 Conclusions 

Most of the fundamental studies confirm the fact that the effect of a hydrogen environment 

on structural materials is accompanied by the appearance in them of inhomogeneity and 

induced differential resistance, which changes over time. This necessitates the creation of 

new models that will determine the stress-strain state of bodies, taking into account the 

susceptibility of the mechanical properties of materials to hydrogenation in a wide range of 

changes in the quantitative characteristics of the stress state. 

In general, in this study, on the basis of the constructed mathematical model of the effect 
of hydrogenation on the stress-strain state of a circular cylindrical shell, a numerical solution 

of the model problem is carried out, the changes in the values of deflections, displacements 

and stresses at different values of hydrogen concentration are illustrated. 
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