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Abstract. For an electric power system (EPS), as a dynamic system with many inputs and many outputs 
(Multi Inputs Multi Outputs System − MIMO), compact analytical formulas are obtained for calculating 
the coefficients of the controller matrix and the observer matrix of the state of the solution of the synthesis 
problem, providing a given placement of eigenvalues along full state vector. These formulas are generali-
zations to MIMO systems of the well-known Ackermann formula used to design the control of systems 
with one input and many outputs (Single Input Multi Outputs System − SIMO). The approach is based on 
the transformations used in the original multi-step (multilevel) decomposition method, as well as a 
nondegenerate similarity transformation in the form of the Kalman controllability matrix. The obtained 
formulas are applicable to dynamic systems, for which the dimension of the state space is a multiple of the 
dimension of the inputs (controls). This limitation is removed by using the Yokoyama transform. These 
formulas differ in terms of parameterization of the set of equivalent laws. An example of the synthesis of a 
control law for a synchronous generator in a complex EPS is considered in order to preserve the existing 
modes of electromechanical oscillations and meet additional requirements (roughness with respect to dis-
turbances and/or increased sensitivity to changes in controlled parameters in a given region or frequency 
band). 

 
Introduction and problem statement 
One of the most well-known explicit calculation for-
mulas used for the synthesis of controllers and observ-
ers of linear stationary dynamic systems in the state 
space with one input and one output, including electric 
power systems (EPS), are the Ackermann and Bass-
Gura formulas [0-4]. 

Let a fully controlled stationary linear dynamic 
SIMO-system (Single Input Multi Outputs System) be 
given 

𝜎𝐱 = 𝑨𝐱 + 𝐛𝑢,                                                           (1) 

where 
𝐱 ∈ ℝ𝑛 is the state vector, is the scalar input, 𝑢 ∈ ℝ,ℝ  
− the set of real numbers, 𝜎𝐱(𝑡) ≜ �̇�(𝑡) for the case of 
continuous time and discrete time 𝜎𝐱(𝑡) ≜ 𝐱(𝑡 + 1). 

The condition for complete controllability of the 
system (1) or complete controllability of the pair corre-
sponds to the nonsingularity of the Kalman controlla-
bility matrix (𝐀,𝐛) 

𝛺(𝐀,𝐛) = (𝐛 𝑨𝐛 ⋯ 𝑨𝑛−1𝐛) ∈ ℝ𝑛×𝑛.              (2) 

Let also the characteristic polynomial of the matrix 
A equals 

𝑑𝑒𝑡(𝜆𝑰𝑛 − 𝑨) = 𝜆𝑛 + 𝛼𝑛−1𝜆𝑛−1 + ⋯+ 𝛼1𝜆 + 𝛼0,  (3) 

where 

𝑰𝑛 is the identity matrix of order n, 𝛼𝑖 ∈ ℝ are the coef-
ficients of the characteristic polynomial, λ is the set of 
complex numbers ℂ.  

Using the feedback law on state variables 

𝑢 = −𝐤𝑇𝐱                                                               (4) 

required to provide a closed system 
�̇� = (𝑨 − 𝐛𝐤𝑇)𝐱,  
the following characteristic polynomial: 

𝑑𝑒𝑡(𝜆𝐈𝑛 − 𝑨 + 𝐛𝐤T) = 𝜆𝑛 + 𝛽𝑛−1𝜆𝑛−1 + ⋯+ 𝛽0.  (5) 

If we introduce the notation for the matrix polyno-
mial 

𝛯(𝐀,𝛽) = 𝑨𝑛 + 𝛽𝑛−1𝑨𝑛−1 + ⋯+ 𝛽1𝑨 + 𝛽0𝑰𝑛,       (6)
then the calculation formula of Ackermann, which de-
termines the vector of coefficients of the controller 
(dually, the observer of the state) in 𝐤𝑇 (4) looks like 
[0- 4] 

𝐤𝑇 = (0 ⋯ 0 1) ⋅ (𝐛 𝑨𝐛 ⋯ 𝑨𝑛−1𝐛)−1 
(𝑨𝑛 + 𝛽𝑛−1𝑨𝑛−1 + ⋯+ 𝛽1𝑨 + 𝛽0𝑰𝑛) 

or taking into account(2), (6) 

𝐤𝑇 = (0 ⋯ 0 1) ⋅ 𝛺−1(𝑨,𝐛) ⋅ 𝛯(𝑨,𝛽).            (7) 

The main advantage of the Ackermann calculation 
formula (7), is its explicit form, which allows using the 
known parameters of the system (1), its characteristic 
polynomial (3) and a given arrangement of poles (pol-
ynomial roots), expressed in coefficients of the charac-
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teristic polynomial (5), calculate the feedback that pro-
vides the closed system with the required location of 
the poles (setting the roots). The same applies to the 
Bass-Gura formula [4], which is not shown here. 

In this paper, we consider a generalization of the 
Ackermann formula (7) for the case of a mathematical 
model of an EPS in the form of a dynamic system with 
many inputs (Multi Inputs Multi Outputs System − 
MIMO). This task is relevant, since there are no explic-
it calculation formulas for synthesizing the feedback 
law for MIMO systems similar to the Ackermann for-
mula. Some exceptions are [5, 6]. In [5] to solve the 
problem, the Sylvester matrix equation and the associ-
ated inversion of the matrix polynomial (6), and in [6] 
is a special form of the control law, which significantly 
limits the area of its use. 

In what follows, all transformations, taking into ac-
count duality, turn out to be valid for the problem of 
synthesis of the state observer. 

Let a fully controlled MIMO system be given, 
which is understood as mathematical model of EPS, 

𝜎𝐱 = 𝑨𝐱 + 𝑩𝐮 (8) 

with state and control matrices of multiple dimensions 
𝑨 ∈ ℝ𝑘⋅𝑚, 𝑩 ∈ ℝ𝑚, 𝑘,𝑚 ∈ ℕ, 
where the matrix 

𝛺(𝐀,𝐁) = [𝑩 𝑨𝑩 … 𝑨𝑘−1𝑩], (9) 

made up of the first k block columns of the Kalman 
controllability matrix is reversible. It is required to de-
termine the matrices of regulators (observers) such that 
the state matrix "object - regulator" ("object - observ-
er") 𝑨 − 𝑩𝑲 has given eigenvalues as 𝜱∗. At the same 
time, in the future we will compare the sets of solutions 
to this problem obtained by various analytical methods: 
using multilevel decomposition [7] and on the basis of 
a non-degenerate similarity transformation. 

1. Solution using multilevel decompo-
sition
Let us perform the following similarity transformation 
[8]: 

𝑨� = 𝛺−1𝑨𝛺 = ��
𝟎𝑚×(𝑛−𝑚)
𝑰𝑛−𝑚

� 𝛺−1𝑨𝑘𝑩�,

𝑩� = 𝛺−1𝑩 = �
𝑰𝑚

𝟎(𝑛−𝑚)×𝑚
�.  (10) 

For the resulting pair of matrices, we synthesize the 
state controller with the matrix 𝑲� . 

In this case, when the condition(9), the number of 
decomposition levels of the pair of matrices 𝑨,� 𝑩� , (in-
cluding the zero level) is 𝑘 [7]. The levels do not de-
generate (the rank of the control matrices at each of the 
levels is 𝑚). Decomposition is performed according to 
the formulas [7] 
𝑨�0 = 𝑨�,   𝑩�0 = 𝑩� , 
𝑨�𝑖+1 = 𝑩�𝑖⊥𝐿𝑨�𝑖𝑩�𝑖⊥𝐿,    𝑩�𝑖+1 = 𝑩�𝑖⊥𝐿𝑨�𝑖𝑩�𝑖, 
𝑖 = 0, 1, … , 𝑘 − 2, 
using semi-orthogonal left zero divisors 

𝑩�𝑖⊥𝐿 = [𝟎(𝑛−(𝑖+1)𝑚)×𝑚 𝑰𝑛−(𝑖+1)𝑚], 𝑖 = 0, 1, … , 𝑘 − 2. 
The state matrices by decomposition levels take the 

form 

𝑨�𝑖 = �
𝟎𝑚×(𝑛−(𝑖+1)𝑚) 𝑨�(𝑖+1,𝑘)

𝑰𝑛−(𝑖+1)𝑚 𝑨�(𝑖+2:𝑘,𝑘)
� =

= �
𝟎𝑚×𝑚 �𝟎𝑚×𝑚 … 𝟎𝑚×𝑚 𝑨�(𝑖+1,𝑘)��������������������

(𝑘−1−𝑖) blocks

𝑩�𝑖+1 𝑨�𝑖+1
�, 

𝑖 = 0, 1, … , 𝑘 − 2, 
𝑨�𝑘−1 = 𝑨�(𝑘,𝑘). 

The control matrices by decomposition levels have 
the form 

𝑩�𝑖 = �
𝑰𝑚

𝟎(𝑛−(𝑖+1)𝑚)×𝑚
� = � 𝑩

�𝑖+1
𝟎𝑚×𝑚

� , 𝑖 = 0, 1, … , 𝑘 − 2, 

𝑩�𝑘−1 = 𝑰𝑚. 
Here and below, the designation corresponds to the 

block located at the intersection 𝑨𝑙(𝑖,𝑗) i-th block line 
and j-th a block column of a matrix 𝑨𝑙 divided into 
blocks of the same size 𝑚 × 𝑚. 

Assign matrices with given eigenvalues by decom-
position levels 
𝜱0,𝜱1, … ,𝜱𝑘−1 ∈ ℂ𝑚×𝑚, 
such that 

�𝑒𝑖𝑔𝜱𝑖

𝑘−1

𝑖=0

= 𝜱∗. 

The controller matrix at the uppermost (k–1)-th lev-
el has the form 
𝑲�𝑘−1 = 𝑩�𝑘−1−1 𝑨�𝑘−1 − 𝜱𝑘−1𝑩�𝑘−1−1 = 𝑨�(𝑘,𝑘) −𝜱𝑘−1 

Next, we sequentially perform the calculations of 
the controller matrices at the levels. Using 
pseudoinverse and auxiliary matrices 
𝑖 = 𝑘 − 2, 𝑘 − 3, … , 1, 0, 
𝑩�𝑖+ = 𝑩�𝑖𝑇, 𝑩�𝑖− = 𝑩�𝑖+ + 𝑲�𝑖+1𝑩�𝑖⊥𝐿 = [𝑰𝑚 𝑲�𝑖+1] 
on i-th decomposition level, define the controller ma-
trix 
𝑲�𝑖 = 𝑩�𝑖−𝑨�𝑖 − 𝜱𝑖𝑩�𝑖−
= �𝑲�𝑖(1,1) 𝑲�𝑖(1,2) … 𝑲�𝑖(1,𝑘−𝑖−1) 𝑲�𝑖(1,𝑘−𝑖)�, 
the blocks of which are written in terms of blocks of 
the controller matrix at the (i+1)-th level as follows: 
𝑲�𝑖(1,1) = 𝑲�𝑖+1(1,1) −𝜱𝑖 
𝑲�𝑖(1,2) = 𝑲�𝑖+1(1,2) −𝜱𝑖𝑲�𝑖+1(1,1) 
… 
𝑲�𝑖(1,𝑘−𝑖−1) = 𝑲�𝑖+1(1,𝑘−(𝑖+1)) −𝜱𝑖𝑲�𝑖+1(1,𝑘−(𝑖+1)−1) 

𝑲�𝑖(1,𝑘−𝑖) = 𝑨�(𝑖+1,𝑘) + � �𝑲�𝑖+1(1,𝑗)𝑨�(𝑖+1+𝑗,𝑘)�
𝑘−(𝑖+1)

𝑗=1
− 𝜱𝑖𝑲�𝑖+1(1,𝑘−(𝑖+1)).

Let's rewrite the expressions for the blocks of the 
controller matrix 
𝑲�𝑖(1,𝑗) (𝑗 = 1, 2, … , 𝑘 − 𝑖)(𝑖 = 0, 1, … , 𝑘 − 1) at the i-
th level of decomposition 𝑨,� 𝑩�, in a recurrent form 
using the values of the known blocks of the same level, 
located to the left of the current block, 

𝑲�𝑖(1,𝑗) = 𝑺�𝑘−𝑖,𝑗 + 𝑨�(𝑘−(𝑗−1),𝑘) + 
+∑ 𝑲�𝑖(1,𝑟)𝑨�(𝑘−(𝑗−1)+𝑟,𝑘)

𝑗−1
𝑟=1 . (11)
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Here are the coefficients of the matrix polynomial 
 𝑺𝑘−𝑖,𝑗 
(𝜆𝑰𝑚 −𝜱𝑖)(𝜆𝑰𝑚 −𝜱𝑖+1) … (𝜆𝑰𝑚 −𝜱𝑘−1) = 
= 𝜆𝑘−𝑖𝑺𝑘−𝑖,0 + 𝜆𝑘−𝑖−1𝑺𝑘−𝑖,1 + 𝜆𝑘−𝑖−2𝑺𝑘−𝑖,2 + ⋯

+ 𝜆𝑺𝑘−𝑖,𝑘−𝑖−1 + 𝑺𝑘−𝑖,𝑘−𝑖
Comparing the values of the blocks of the controller 

matrix at the lowest level with the values of the blocks 
in the lower k-th rows of matrices , we obtain the value 
of the controller matrix in explicit form 
𝑲�0(1,𝑗)𝑲� = 𝑲�0𝑖 = 0𝑨�0,𝑨�1, … ,𝑨�𝑘 
𝑲� = �𝑲�0(1,1) 𝑲�0(1,2) … 𝑲�0(1,𝑘)� =

∑ �𝑺𝑘,𝑗 [𝟎𝑚×𝑚 … 𝟎𝑚×𝑚 𝑰𝑚]�����������������
𝑘 blocks

𝑨�𝑘−𝑗�𝑘
𝑗=0 .  (12) 

Let us carry out the reverse transition by the simi-
larity transformation (10) 
𝑲 = 𝑲�𝛺−1 
and write the result 

𝑲 =

∑ �𝑺𝑘,𝑗 [𝟎𝑚×𝑚 … 𝟎𝑚×𝑚 𝑰𝑚]�����������������
𝑘 blocks

𝛺−1𝑨𝑘−𝑗�𝑘
𝑗=0 . (13) 

Recall that here are the coefficients of the matrix 
polynomial𝑺𝑘,𝑗  ( 𝑗 = 1, 2, … , 𝑘) 

(𝜆𝑰𝑚 − 𝜱0)(𝜆𝑰𝑚 −𝜱1) … (𝜆𝑰𝑚 − 𝜱𝑘−1) = 
= 𝜆𝑘𝑺𝑘,0 + 𝜆𝑘−1𝑺𝑘,1 + 𝜆𝑘−2𝑺𝑘,2 + ⋯+ 𝜆𝑺𝑘,𝑘−1 + 𝑺𝑘,𝑘, 
(14) 

from which (in accordance with the theorem on the 
equality of spectra in the method of multilevel decom-
position [7]) the characteristic polynomial of the matrix 
is formed 𝑨 − 𝑩𝑲 
�𝜆𝑘𝑺𝑘,0 + 𝜆𝑘−1𝑺𝑘,1 + 𝜆𝑘−2𝑺𝑘,2 + ⋯+ 𝜆𝑺𝑘,𝑘−1 + 𝑺𝑘,𝑘�

= |𝜆𝑰𝑚 − 𝜱0||𝜆𝑰𝑚 −𝜱1| … |𝜆𝑰𝑚
− 𝜱𝑘−1|.

Formula (13) describes the set of equivalent solu-
tions (regulator matrices) of the modal synthesis prob-
lem under consideration, and the parameterization of 
this set (the construction of the set of solutions)is car-
ried out by all possible matrix polynomials (14). 

2. Solution based on a nondegenerate
similarity transformation
For a pair of matrices (𝑨,𝑩) perform a similarity trans-
formation [8]. Note that in the general case the Yoko-
yama transformation [7], which removes restrictions on 
the ratio (multiplicity) of the dimensions of the state 
vectors and inputs used in this work. However, to sim-
plify calculations, we will use the transformation(10). 

As a result of the transformation (10) we obtain 
an equivalent pair of matrices (𝑨�,𝑩�), for which we 
define a controller with matrix 𝑲� . Next, we form the 
characteristic polynomial of the matrix 𝑨� − 𝑩�𝑲� : 

�𝜆𝑰𝑛 − �𝑨� − 𝑩�𝑲���

=

�

�

�

𝜆𝑰𝑚 + 𝑲� (1,1) 𝑲� (1,2) 𝑲� (1,3) 𝑲� (1,4) … 𝑲�1,(𝑘−1) 𝑲� (1,𝑘) − 𝑨�(1,𝑘)

−𝑰𝑚 𝜆𝑰𝑚 𝟎𝑚×𝑚 𝟎𝑚×𝑚 … 𝟎𝑚×𝑚 −𝑨�(2,𝑘)

𝟎𝑚×𝑚 −𝑰𝑚 𝜆𝑰𝑚 𝟎𝑚×𝑚 … 𝟎𝑚×𝑚 −𝑨�(3,𝑘)
⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮

𝟎𝑚×𝑚 … 𝟎𝑚×𝑚 −𝑰𝑚 𝜆𝑰𝑚 𝟎𝑚×𝑚 −𝑨�(𝑘−2,𝑘)

𝟎𝑚×𝑚 … 𝟎𝑚×𝑚 𝟎𝑚×𝑚 −𝑰𝑚 𝜆𝑰𝑚 −𝑨�(𝑘−1,𝑘)

𝟎𝑚×𝑚 … 𝟎𝑚×𝑚 𝟎𝑚×𝑚 𝟎𝑚×𝑚 −𝑰𝑚 𝜆𝑰𝑚 − 𝑨�(𝑘,𝑘)

�

�

�

.

Here the determinant is divided by solid lines into 
blocks 

�𝜆𝑰𝑛 − �𝑨� − 𝑩�𝑲��� = �
𝑿1,1 𝑿1,2
𝑿2,1 𝑿2,2

�.

Since the block 𝑿2,1 is an invertible matrix, and , 
we write the equivalent characteristic equation�𝑿2,1� =
(−1)𝑛−𝑚 

�
𝑿1,1 𝑿1,2
𝑿2,1 𝑿2,2

� = 0 ⇔ ��
𝑿1,1 𝑿1,2
𝑿2,1 𝑿2,2

� �
−𝑿2,1

−1𝑿2,2 𝑰𝑛−𝑚
𝑰𝑚 𝟎𝑚×(𝑛−𝑚)

�� = 0 ⇔

⇔ �
𝑿1,2 − 𝑿1,1𝑿2,1

−1𝑿2,2 𝑿1,1
𝟎(𝑛−𝑚)×𝑚 𝑿2,1

� = 0 ⇔ �𝑿2,1��𝑿1,2 − 𝑿1,1𝑿2,1
−1𝑿2,2� = 0 ⇔

⇔ �𝑿1,2 − 𝑿1,1𝑿2,1
−1𝑿2,2� = 0.

(15) 
Next, we define the inverse matrix 

𝑿2,1
−1

= −

⎣
⎢
⎢
⎢
⎢
⎡ 𝑰𝑚 𝜆𝑰𝑚 𝜆2𝑰𝑚 𝜆3𝑰𝑚 ⋯ 𝜆𝑘−2𝑰𝑚
𝟎𝑚×𝑚 𝑰𝑚 𝜆𝑰𝑚 𝜆2𝑰𝑚 ⋯ 𝜆𝑘−3𝑰𝑚
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

𝟎𝑚×𝑚 ⋯ 𝟎𝑚×𝑚 𝑰𝑚 𝜆𝑰𝑚 𝜆2𝑰𝑚
𝟎𝑚×𝑚 ⋯ 𝟎𝑚×𝑚 𝟎𝑚×𝑚 𝑰𝑚 𝜆𝑰𝑚
𝟎𝑚×𝑚 ⋯ 𝟎𝑚×𝑚 𝟎𝑚×𝑚 𝟎𝑚×𝑚 𝑰𝑚 ⎦

⎥
⎥
⎥
⎥
⎤

 

and matrix polynomial 

𝑿1,2 − 𝑿1,1𝑿2,1
−1𝑿2,2 = 𝜆𝑘𝑺�𝑘,0 + 𝜆𝑘−1𝑺�𝑘,1 + 𝜆𝑘−2𝑺�𝑘,2 +

⋯+ 𝜆𝑺�𝑘,𝑘−1𝜙 + 𝑺�𝑘,𝑘 ,    (15) 

where by grouping like terms in powersφmatrix coef-
ficients are determined 

𝑺�𝑘,𝑗 = 𝑲� (1,𝑗) − 𝑨�(𝑘−(𝑗−1),𝑘) −�𝑲� (1,𝑟)𝑨�(𝑘−(𝑗−1)+𝑟,𝑘)

𝑗−1

𝑟=1

. 

From here one can express 

𝑲� (1,𝑗) = 𝑺�𝑘,𝑗 + 𝑨�(𝑘−(𝑗−1),𝑘) + �𝑲� (1,𝑟)𝑨�𝑘−(𝑗−1)+𝑟,𝑘

𝑗−1

𝑟=1

. 

The resulting formula is similar to the expression 
(11) for 𝑖 = 0 up to coefficients , which are now re-
placed by . Therefore, by analogy with 𝑺𝑘,𝑗𝑺�𝑘,𝑗(12) and
(13) we get

𝑲� = �𝑲� (1,1) 𝑲� (1,2) … 𝑲� (1,𝑘)� =

∑ �𝑺�𝑘,𝑖 [𝟎𝑚×𝑚 … 𝟎𝑚×𝑚 𝑰𝑚]�����������������
𝑘 blocks

𝑨�𝑘−𝑖�𝑘
𝑖=0   (16) 

and 

𝑲 = ∑ �𝑺�𝑘,𝑗 [𝟎𝑚×𝑚 … 𝟎𝑚×𝑚 𝑰𝑚]�����������������
𝑘 blocks

𝛺−1𝑨𝑘−𝑗�𝑘
𝑗=0 . 

(17) 
Expression (18) describes the set of equivalent 

solutions (regulator matrices) of the problem under 
consideration, the parameterization of which is carried 
out by all possible matrix polynomials (16). The main 
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difference between this solution and (13) is that the 
matrix polynomial (16) does not have to be decom-
posed into matrix factors, as is done in (14). The main 
thing is that the roots of the characteristic equation (15) 
�𝜆𝑘𝑰𝑚 + 𝜆𝑘−1𝑺�𝑘,1 + 𝜆𝑘−2𝑺�𝑘,2 + ⋯+ 𝜆𝑺�𝑘,𝑘−1 + 𝑺�𝑘,𝑘�

= 0 
coincided with the corresponding eigenvalues of the 
matrices 𝜱∗. 

3. Example
Consider an example of practical synthesis, when the 
task is to modify the previously obtained control law 
for synchronous generators so that the modes of elec-
tromechanical oscillations provided by the original 
control laws are preserved, while the modified laws 
would satisfy some additional requirements. Such re-
quirements may include “enhanced” roughness with 
respect to disturbances (robustness), or, conversely, 
increased sensitivity to changes in controlled parame-
ters in a given region or frequency band, etc. These 
requirements can be met by varying the given matrices 
⋃ 𝑒𝑖𝑔𝜱𝑖
𝑘−1
𝑖=0 = 𝜱∗. that the desired solution of the 

modal control problem under consideration, which be-
longs to the set of possible solutions (18), is not con-
tained in the set (13), obtained using multilevel decom-
position. In other words, consider the case when the 
matrix polynomial (16) does not decompose into ma-
trix factors by analogy with the controller matrix (14). 

Let the model be given EES, including synchronous 
generators and represented by the following linearized 
equations 𝑁/2: 
𝑑𝛿𝑖
𝑑𝑡

= 𝑠𝑖 ,
𝑑𝑠𝑖
𝑑𝑡

= − 1
𝐽𝑖

(𝛥𝑃𝑖 + 𝐷𝑖𝛥𝑠𝑖 − 𝛥𝑢𝑖), 𝑖 =
1,2, . . . . , 𝑘 = 𝑁/2.                                                  (19) 

Here 𝐷𝑖 is the damping coefficient, 𝐽𝑖 is the moment 
of inertia, 𝛥𝑃𝑖 is the change in active power, deter-
mined using the equations of the electrical network 

�𝛥𝑷𝛥𝑸� = �𝑯 𝑴
𝑵 𝐃� �

𝛥𝛿
𝛥𝑈�, 

Where 𝛥𝐏 is the active power increment vector in all 
system nodes, 𝛥𝐐 is the reactive power increment vec-
tor, 𝛥𝐔 is the voltage amplitude increment vector, 𝛥𝛅 is 
the voltage phase shift angle increment vector, 𝛥𝐬 is 
the generator slip increment vector, 𝛥𝐮 is the control 
vector (signals of PID-controllers). The elements of the 
Jacobi matrix are the corresponding partial derivatives 
𝐻𝑖𝑗 = 𝜕𝑃𝑖

𝜕𝛿𝑗
,𝑀𝑖𝑗 = 𝜕𝑃𝑖

𝜕𝑈𝑗
,𝑁𝑖𝑗 = 𝜕𝑄𝑖

𝜕𝛿𝑗
,𝐷𝑖𝑗 = 𝜕𝑄𝑖

𝜕𝑈𝑗
. 

Under the assumptions made, the matrix 𝑨 and 𝑩 in 
the vector equation of the model  EES take the form 
𝑨 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 ⋯ 0 1 0 ⋯ 0
0 0 ⋯ 0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 0 ⋯ 1

− �̄�11
𝑇𝐽1

− �̄�12
𝑇𝐽1

⋯ − �̄�1,𝑘

𝑇𝐽1
− �̄�11

𝑇𝐽1
0 ⋯ 0

− �̄�21
𝑇𝐽2

− �̄�22
𝑇𝐽2

⋯ − �̄�2,𝑘

𝑇𝐽2
0 − �̄�2

𝑇𝐽2
⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
− �̄�𝑘−1,1

𝑇𝐽𝑘
− �̄�𝑘−1,2

𝑇𝐽𝑘
⋯ − �̄�𝑘,𝑘

𝑇𝐽𝑘
0 0 ⋯ − �̄�𝑘

𝑇𝐽𝑘⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

𝑩 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0
𝑏1 0 ⋯ 0
0 𝑏2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑏𝑘⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

Here, as you can see, the dimension of inputs is a 
multiple of the dimension of states, and phase angles 
and slips are used as outputs. 

Let us consider the case of specifying the pa-
rameters of the control law in the PID-controllers, 
which provide the solution of the problem formulated 
earlier. 

Let and be given an arbitrary non-zero real number 
𝑚 = 2, 𝑘 = 2,𝑛 = 𝑘 ⋅ 𝑚 = 4𝜅. 

Let also the matrices from (14) have the form 𝜱∗ =
{𝜙∗, . . . ,𝜙∗} 

𝑺�2,1 = �−2𝜙∗ 0
0 −2𝜙∗� , 𝑺�2,2 = �𝜙

∗𝜙∗ 𝜅
0 𝜙∗𝜙∗�.

Characteristic equation 

�𝜆2𝑰𝑚 + 𝜆𝑺�2,1 + 𝑺�2,2� = �
(𝜆 − 𝜙∗)2 𝜅

0 (𝜆 − 𝜙∗)2� = 0 

has roots coinciding with given eigenvalues (given 
modes of electromechanical oscillations), but the sys-
tem of equations 

�
𝜱0 + 𝜱1 = −𝑺�2,1

𝜱0𝜱1 = 𝑺�2,2
 (18) 

turns out to be unsolvable with respect to the matrices 
𝜱0,𝜱1 ∈ ℂ. 

Let further and 𝜱∗ = �𝜙𝑥∗,𝜙𝑥∗,𝜙𝑦∗ ,𝜙𝑦∗� 

𝑺2,1 = �
−2𝜙𝑥∗ 𝜅

0 −2𝜙𝑦∗
� , 𝑺2,2 = �

𝜙𝑥∗𝜙𝑥∗ 0
0 𝜙𝑦∗𝜙𝑦∗

�.

Characteristic equation 

�𝜆2𝑰𝑚 + 𝜆𝑺2,1 + 𝑺2,2� = �
(𝜆 − 𝜙𝑥∗)2 𝜅𝜙

0 �𝜆 − 𝜙𝑦∗�
2� = 0 

has roots coinciding with the given eigenvalues, and 
the system of equations 

�
𝜱0 + 𝜱1 = −𝑺2,1
𝜱0𝜱1 = 𝑺2,2

 (19) 

is solvable with respect to matrices . One of the two 
possible solutions to system (21) has the following 
simple form:𝜱0,𝜱1 ∈ ℂ 

𝜱0 = �
𝜙𝑥∗ − 𝜅𝜙𝑦∗

𝜙𝑥∗−𝜙𝑦∗

0 𝜙𝑦∗
� ,

𝑒𝑖𝑔𝜱0 = �𝜙𝑥∗,𝜙𝑦∗�,

𝜱1 = �
𝜙𝑥∗

𝜅𝜙𝑥∗

𝜙𝑥∗−𝜙𝑦∗

0 𝜙𝑦∗
� ,

𝑒𝑖𝑔𝜱1 = �𝜙𝑥∗,𝜙𝑦∗�,

 (20) 

where, as can be seen, the eigenvalues are located 
on the main diagonal of the corresponding matrices. 
Triangular matrices (22) have the following features: 
− firstly, to exclude division by zero in the expres-

sions of off-diagonal elements in matrices (22), it
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is necessary to prevent the coincidence of the giv-
en eigenvalues (multiplicity of oscillation modes); 

− secondly, the off-diagonal elements of matrices
(22) contain the previously mentioned "adjusting"
parameterκ, which makes it possible to provide the
previously mentioned "enhanced" roughness with
respect to disturbances, or increased sensitivity to
changes in controlled parameters in a given region
or frequency band (while maintaining the given
oscillation modes).

4. Conclusion
For the EES, represented by a linear stationary dynam-
ic system with many inputs and many outputs (MIMO-
system), compact highly efficient analytical formulas 
for calculating the coefficients of the feedback law are 
obtained when solving the problem of modal control 
(given placement of eigenvalues) by the full state vec-
tor. The resulting analytical formulas are generaliza-
tions to MIMO-systems of the well-known Ackermann 
formula applied to systems with one input and many 
outputs (SIMO-systems). The transformations are 
based on a non-degenerate similarity transformation 
and the algorithm of the multi-step decomposition 
method. The obtained formulas are applicable to dy-
namic systems, in which the dimension of the state 
space is a multiple of the dimension of the system in-
puts. This limitation is removed by using the Yokoya-
ma transform. The resulting formulas differ in terms of 
the parametrization of the set of equivalent laws. It is 
shown that there are cases when the set of equivalent 
control laws obtained using an analytical formula based 
on a non-degenerate similarity transformation is wider 
than the set of control laws formed on the basis of the 
multi-step decomposition method. The synthesis ex-
ample demonstrated the possibility of changing the 
previously obtained control law for synchronous gen-
erators in order to preserve the previous oscillation 
modes and satisfy some additional requirements for 
robustness and sensitivity. These requirements are pro-
vided by varying the parameters of special matrices. 
The implementation of the obtained laws involves the 
use of synchronized vector measurements 𝜱∗. 

References 
1. T. Kailath Linear Systems. Prentice Hall. Eng-

lewood Cliffs. NJ. 1980.
2. R. Dorf, R. Bishop Modern control systems. Mos-

cow: Basic Knowledge Laboratory, 2002.
3. M.G. Gadzhiev, M.Sh. Misrikhanov, V.N. Ryab-

chenko, Yu.V. Sharov Matrix methods of analysis
and control of transient processes in electric pow-
er systems. Moscow: MPEI Publishing House,
2019.

4. B. Kuo Theory and design of digital control sys-
tems. M.: Mashinostroenie, 1986.

5. K. Nordström, H. Norlander On the multi input
pole placement control problem // Proc. 36 IEEE
Conf. decision and control. 1997. V. 5. P. 4288 -
4293.

6. N.E. Zubov, E.A. Vorobieva, E.A. Mikrin, M.Sh.
Misrikhanov, V.N. Ryabchenko Synthesis of stabi-
lizing control of a spacecraft based on the general-
ized Ackermann formula // Izvestiya RAN, Theory
and Control Systems, 2011, No. 1, pp. 96 – 106.

7. N.E. Zubov, E.A. Mikrin, V.N. Ryabchenko Ma-
trix methods in the theory and practice of aircraft
automatic control systems. M.: Publishing House
of Moscow State Technical University named after
N.E. Bauman, 2016.

8. N.E. Zubov, E.A. Mikrin, V.N. Ryabchenko Syn-
thesis of astatic control of a linear system based
on the generalized Ackermann formula // Bulletin
of the Moscow State Technical University. N.E.
Bauman. Ser. Instrumentation, 2017, No. 1 (112),
pp. 67 – 74.

 

  
RSES 2023

https://doi.org/10.1051/e3sconf/202346101012E3S Web of Conferences 461, 01012 (2023) 

5


